Authors: Stošić, Marko 
Title: New categorifications of the chromatic and dichromatic polynomials for graphs
Journal: Fundamenta Mathematicae
Volume: 190
First page: 231
Last page: 243
Issue Date: 5-Jul-2006
Rank: M22
ISSN: 0016-2736
DOI: 10.4064/fm190-0-9
Abstract: 
For each graph G, we define a chain complex of graded modules over the ring of polynomials whose graded Euler characteristic is equal to the chromatic polynomial of G. Furthermore, we define a chain complex of doubly-graded modules whose (doubly) graded Euler characteristic is equal to the dichromatic polynomial of G. Both constructions use Koszul complexes, and are similar to the new Khovanov-Rozansky categorifications of the HOMFLYPT polynomial. We also give a simplified definition of this triply-graded link homology theory.
Keywords: Chromatic polynomial | Dichromatic polynomial | Graph | Homology | Khovanov-Rozansky | Koszul complex
Publisher: Instytut Matematyczny Polskiej Akademii Nauk
Project: FCT, Grant no. SFRH/BD/6783/2001

Show full item record

SCOPUSTM   
Citations

6
checked on Dec 20, 2024

Page view(s)

17
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.