DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragović, Vladimir | en |
dc.contributor.author | Gajić, Borislav | en |
dc.date.accessioned | 2020-04-27T10:55:10Z | - |
dc.date.available | 2020-04-27T10:55:10Z | - |
dc.date.issued | 2006-01-01 | en |
dc.identifier.issn | 0377-9017 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/836 | - |
dc.description.abstract | We consider a four-dimensional generalization of Hess-Appel'rot system and costruct its Lax pair. Both classical and algebro-geometric integration procedure are proceeded. The algebro-geometric integration is based on deep facts from geometry of Prym varieties such as the Mumford relation and Mumford-Dalalyan theory. The integration is similar to the integration of Lagrange bitop which has recetly been performed by the authors. | en |
dc.publisher | Springer Link | - |
dc.relation | Serbian Ministry of Science and Technology, Project No. 1643 | - |
dc.relation.ispartof | Letters in Mathematical Physics | en |
dc.subject | Algebro-geometric integration | Four-dimensional Hess-Appel'rot system | Invariant relation | Lax pair | Prym variety | Rigid body motion | en |
dc.title | Matrix Lax polynomials, geometry of Prym varieties and systems of Hess-Appel'rot type | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s11005-006-0071-9 | en |
dc.identifier.scopus | 2-s2.0-33646679420 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 163 | en |
dc.relation.lastpage | 186 | en |
dc.relation.issue | 2-3 | en |
dc.relation.volume | 76 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-0295-4743 | - |
crisitem.author.orcid | 0000-0002-1463-0113 | - |
SCOPUSTM
Citations
3
checked on Nov 4, 2024
Page view(s)
12
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.