DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorGajić, Borislaven
dc.date.accessioned2020-04-27T10:55:10Z-
dc.date.available2020-04-27T10:55:10Z-
dc.date.issued2006-01-01en
dc.identifier.issn0377-9017en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/836-
dc.description.abstractWe consider a four-dimensional generalization of Hess-Appel'rot system and costruct its Lax pair. Both classical and algebro-geometric integration procedure are proceeded. The algebro-geometric integration is based on deep facts from geometry of Prym varieties such as the Mumford relation and Mumford-Dalalyan theory. The integration is similar to the integration of Lagrange bitop which has recetly been performed by the authors.en
dc.publisherSpringer Link-
dc.relationSerbian Ministry of Science and Technology, Project No. 1643-
dc.relation.ispartofLetters in Mathematical Physicsen
dc.subjectAlgebro-geometric integration | Four-dimensional Hess-Appel'rot system | Invariant relation | Lax pair | Prym variety | Rigid body motionen
dc.titleMatrix Lax polynomials, geometry of Prym varieties and systems of Hess-Appel'rot typeen
dc.typeArticleen
dc.identifier.doi10.1007/s11005-006-0071-9en
dc.identifier.scopus2-s2.0-33646679420en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage163en
dc.relation.lastpage186en
dc.relation.issue2-3en
dc.relation.volume76en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 4, 2024

Page view(s)

12
checked on Nov 4, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.