Authors: Dodig, Marija 
Title: Matrix pencils completion problems
Journal: Linear Algebra and Its Applications
Volume: 428
Issue: 1
First page: 259
Last page: 304
Issue Date: 1-Jan-2008
Rank: M22
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.08.029
Abstract: 
In this paper we give a partial solution to the challenge problem posed by Loiseau et al. in [J. Loiseau, S. Mondié, I. Zaballa, P. Zagalak, Assigning the Kronecker invariants of a matrix pencil by row or column completion, Linear Algebra Appl. 278 (1998) 327-336], i.e. we assign the Kronecker invariants of a matrix pencil obtained by row or column completion. We have solved this problem over arbitrary fields.
Keywords: Completion | Kronecker canonical form | Kronecker invariants | Matrix pencils
Publisher: Elsevier
Project: FCT, Grant no. SFRH/BPD/26607/2006

Show full item record

SCOPUSTM   
Citations

25
checked on Nov 24, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.