Authors: Farah, Ilijas 
Jekel, D. A.V.I.D.
Pi, Jennifer
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Quantum expanders and quantifier reduction for tracial von neumann algebras
Journal: Journal of Symbolic Logic
Issue Date: 2025
Rank: M22
ISSN: 0022-4812
DOI: 10.1017/jsl.2025.10100
Abstract: 
We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.
Publisher: Cambridge University Press

Show full item record

Page view(s)

13
checked on Jan 11, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.