| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Farah, Ilijas | en_US |
| dc.contributor.author | Jekel, D. A.V.I.D. | en_US |
| dc.contributor.author | Pi, Jennifer | en_US |
| dc.date.accessioned | 2025-12-24T17:23:30Z | - |
| dc.date.available | 2025-12-24T17:23:30Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.issn | 0022-4812 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5692 | - |
| dc.description.abstract | We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders. | en_US |
| dc.publisher | Cambridge University Press | en_US |
| dc.relation.ispartof | Journal of Symbolic Logic | en_US |
| dc.title | Quantum expanders and quantifier reduction for tracial von neumann algebras | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1017/jsl.2025.10100 | - |
| dc.identifier.scopus | 2-s2.0-105010274094 | - |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.description.rank | M22 | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| crisitem.author.orcid | 0000-0001-7703-6931 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.