DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorJekel, D. A.V.I.D.en_US
dc.contributor.authorPi, Jenniferen_US
dc.date.accessioned2025-12-24T17:23:30Z-
dc.date.available2025-12-24T17:23:30Z-
dc.date.issued2025-
dc.identifier.issn0022-4812-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5692-
dc.description.abstractWe provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.en_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofJournal of Symbolic Logicen_US
dc.titleQuantum expanders and quantifier reduction for tracial von neumann algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/jsl.2025.10100-
dc.identifier.scopus2-s2.0-105010274094-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

Page view(s)

9
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.