Authors: Farah, Ilijas 
Jekel, D. A.V.I.D.
Pi, Jennifer
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Quantum expanders and quantifier reduction for tracial von neumann algebras
Journal: Journal of Symbolic Logic
Issue Date: 2025
Rank: M22
ISSN: 0022-4812
DOI: 10.1017/jsl.2025.10100
Abstract: 
We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.
Publisher: Cambridge University Press

Show full item record

Page view(s)

9
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.