DC FieldValueLanguage
dc.contributor.authorIvković, Stefanen_US
dc.date.accessioned2024-11-04T10:03:59Z-
dc.date.available2024-11-04T10:03:59Z-
dc.date.issued2024-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5380-
dc.description.abstractMotivated by Fredholm theory on the standard Hilbert module over a unital C∗ -algebra introduced by Mishchenko and Fomenko, we provide a new approach to axiomatic Fredholm theory in unital C∗ -algebras established by Kečkić and Lazović in [16]. Our approach is equivalent to the approach introduced by Kečkić and Lazović, however, we provide new proofs which are motivated by the proofs given by Mishchenko and Fomenko in [18]. Next,we extend Fredholm theory in von Neumann algebras established by Breuer in [4] and [5] to spectral Fredholm theory. We consider 2 by 2 upper triangular operator matrices with coefficients in a von Neumann algebra and give the relationship between the generalized essential spectra in the sense of Breuer of such matrices and of their diagonal entries, thus generalizing in this setting the result by Ðorđević in [6]. Finally, we prove that if a generalized Fredholm operator in the sense of Breuer has 0 as an isolated point of its spectrum, then the corresponding spectral projection is finite.en_US
dc.publisherPrirodno-matemazički fakultet Univerziteta u Nišuen_US
dc.relation.ispartofFilomaten_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectFredholm theory | Hilbert module | von Neumann algebra | finite projections | K-group | indexen_US
dc.titleOn a new approach to Fredholm theory in unital C∗-algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2419663I-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage6663-
dc.relation.lastpage6680-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-2248-8206-
Files in This Item:
File Description SizeFormat
SIvkovic.pdf263.62 kBAdobe PDFView/Open
Show simple item record

Page view(s)

10
checked on Nov 7, 2024

Download(s)

3
checked on Nov 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons