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Abstract. Motivated by Fredholm theory on the standard Hilbert module over a unital C∗ -algebra
introduced by Mishchenko and Fomenko, we provide a new approach to axiomatic Fredholm theory in
unital C∗ -algebras established by Kečkić and Lazović in [16]. Our approach is equivalent to the approach
introduced by Kečkić and Lazović, however, we provide new proofs which are motivated by the proofs
given by Mishchenko and Fomenko in [18]. Next,we extend Fredholm theory in von Neumann algebras
established by Breuer in [4] and [5] to spectral Fredholm theory. We consider 2 by 2 upper triangular operator
matrices with coefficients in a von Neumann algebra and give the relationship between the generalized
essential spectra in the sense of Breuer of such matrices and of their diagonal entries, thus generalizing
in this setting the result by Ðord̄ević in [6]. Finally, we prove that if a generalized Fredholm operator in
the sense of Breuer has 0 as an isolated point of its spectrum, then the corresponding spectral projection is
finite.

1. Introduction

The Fredholm and semi-Fredholm theory on Hilbert and Banach spaces started by studying the integral
equations introduced in the pioneering work by Fredholm in 1903 in [7]. After that, the abstract theory of
Fredholm and semi-Fredholm operators on Hilbert and Banach spaces was further developed in numerous
papers and books such as [2], [3]. In addition to classical semi-Fredholm theory on Hilbert and Banach
spaces, several generalizations of this theory have been considered. Breuer for example started the devel-
opment of Fredholm theory in von-Neumann algebras as a generalization of the classical Fredholm theory
for operators on Hilbert spaces. In [4] and [5] he introduced the notion of a Fredholm operator in a von
Neumann algebra and established its main properties. On the other hand, Fredholm theory on Hilbert
C∗-modules as another generalization of the classical Fredholm theory on Hilbert spaces was started by
Mishchenko and Fomenko. In [18] they introduced the notion of a Fredholm operator on the standard
Hilbert C∗-module and proved a generalization in this setting of some of the main results from the classical
Fredholm theory.
The interest for considering these generalizations comes from the theory of pseudo differential operators
acting on manifolds. The classical theory can be applied in the case of compact manifolds, but not in the
case of non-compact ones. Even operators on Euclidian spaces are hard to study, for example Laplacian is
not Fredholm. Kernels and cokernels of many operators are infinite dimensional Banach spaces, however,
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they may also at the same time be finitely generated Hilbert modules over some appropriate C∗-algebra.
Similarly, orthogonal projections onto kernels and cokernels of many bounded linear operators on Hilbert
spaces are not finite rank projections in the classical sense, but they are still finite projections in an appropri-
ate von Neumann algebra. Therefore, many operators that are not semi-Fredholm in the classical sense may
become semi-Fredholm in a more general sense if we consider them as operators on Hilbert C∗-modules or
as elements of an appropriate von Neumann algebra. Hence, by studying these generalized semi-Fredholm
operators, we get a proper extension of the classical semi-Fredholm theory to new classes of operators.

Now, Kečkić and Lazović in [16] established an axiomatic approach to Fredholm theory. They introduced
the notion of a finite type element in a unital C∗-algebra which generalizes the notion of the compact operator
on the standard Hilbert C∗-module and the notion of a finite operator in a properly infinite von Neumann
algebra. They also introduced the notion of a Fredholm type element with respect to the ideal of these finite
type elements. This notion is at a same time a generalization of the classical Fredholm operator on a Hilbert
space, Fredholm C∗-operator on the standard Hilbert C∗-module defined by Mishchenko and Fomenko and
the Fredholm operator on a properly infinite von Neumann algebra defined by Breuer. The index of this
Fredholm type element takes values in the K-group. They showed that the set of Fredholm type elements in
a unital C∗-algebra is open in the norm topology and they proved a generalization of the Atkinson theorem.
Moreover, they proved the multiplicativity of the index in the K-group and that the index is invariant under
perturbations of Fredholm type elements by finite type elements.
In [15] we went further in this direction and defined semi-Fredholm and semi-Weyl type elements in a
unital C∗-algebra. We investigated and proved several properties of these elements as a generalization of
the results from the classical semi-Fredholm and semi-Weyl theory on Hilbert and Banach spaces.

In Section 3 of this paper we introduce a new approach to axiomatic Fredholm theory in unital C∗-
algebras and we prove that this approach is in fact equivalent to the above mentioned approach developed
by Kečkić and Lazović. In this new approach we use the fact that a unital C∗-algebra A is isometrically
isomorphic to the algebra of all A− linear bounded operators on A when A is considered as a Hilbert
module over itself. This enables us to apply some known results from operator theory on Hilbert C∗-
modules, such as the result concerning the complementability of the kernel and the image of a closed range
C∗-operator (for more details, see [17, Theorem 2.3.3]) and in that way we bypass several technical lemmas
from the paper by Kečkić and Lazović [16] which require long proofs.

Next, in Section 4 we extend Fredholm theory in von Neumann algebras established in [4] and [5] to
spectral Fredholm theory in von Neumann algebras generalizing in this setting the results from the classical
spectral semi-Fredholm theory for operators on Hilbert and Banach spaces. The concept of invertibility
up to a pair of orthogonal projections given in [16] plays the key role in this section. In Proposition 4.9
in Section 4 we consider 2 by 2 upper triangular operator matrices with coefficients in a von Neumann
algebra and describe the relationship between the essential spectra of such matrices and of their diagonal
entries,generalizing in this setting the result by Ðord̄ević in [6]. These essential spectra which we consider
are induced by the class of generalized Fredholm operators in the sense of Breuer. Next, in Section 4 we
consider isolated points of the spectrum of an operator F in a von Neumann algebra A. We prove that if
F is generalized Fredholm operator in the sense of Breuer and has 0 as an isolated point of its spectrum,
then the spectral projection corresponding to 0 is a finite operator in A. Then we introduce a concept of
generalized Browder operators inA as a proper generalization of the classical Browder operators on Hilbert
spaces (Fredholm operators with finite ascent and descent), and we show that the class of these generalized
Browder operators is a subclass of generalized Fredholm operators in the sense of Breuer. As a consequence
of our result regarding finiteness of spectral projections corresponding to isolated points of the spectrum,
we prove that if a generalized Fredholm operator in the sense of Breuer has 0 as an isolated point of its
spectrum, then it is generalized Browder in the sense of our definition. This is a generalization of the well
known result from the classical Fredholm theory on Hilbert spaces given in [19, Theorem 3.1].

2. Preliminaries

Throughout this paperA always stands for a unital C∗ -algebra and B(A) denotes the set of allA - linear
bounded operators on A when A is considered as a right Hilbert module over itself. Since A is self-dual
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Hilbert module over itself, by [17, Proposition 2.5.2] all operators that belong to B(A) are adjointable.
Moreover, by [17, Corollary 2.5.3] the set B(A) is a unital C∗ -algebra.
Let V be the map from A into B(A) given by V(a) = La for all a ∈ A where La is the corresponding left
multiplier by a. Then V is an isometric *-homomorphism, and, sinceA is unital, it follows that V is in fact
an isomorphism. Thus, B(A) can be identified withA by considering the left multipliers.
We recall now the following definition.

Definition 2.1. [16, Definition 1.1] Let A be an unital C∗-algebra, and F ⊆ A be a subalgebra which satisfies the
following conditions:
(i) F is a selfadjoint ideal inA, i.e. for all a ∈ A, b ∈ F there holds ab, ba ∈ F , and a ∈ F implies a∗ ∈ F ;
(ii) There is an approximate unit pα ∈ F consisting of projections;
(iii) If p, q ∈ F are projections, then there exists v ∈ A, such that vv∗ = q and v∗v ⊥ p, i.e. v∗v + p is a projection as
well.
We shall call the elements of such an ideal finite type elements. Henceforward we shall denote this ideal by F .

Let V be the isometric *-isomorphism given above. If F is an ideal of finite type elements inA, then it
is not hard to see that V(F ) is an ideal of finite type elements in B(A), so we may identify F with V(F ).

Definition 2.2. [16, Definition 1.2] LetA be a unital C∗−ideal, and let F ⊆ A be an algebra of finite type elements.
In the set Proj(F ) we define the equivalence relation:

p ∼ q⇔ ∃v ∈ A vv∗ = p, v∗v = p,

i.e. Murray - von Neumann equivalence. The set S(F ) = Proj(F ) / ∼ is a commutative semigroup with respect to
addition, and the set,K(F ) = G(S(F )), where G denotes the Grothendic functor, is a commutative group.

The following concept will be of crucial importance in the rest of the paper.

Definition 2.3. [16, Definition 2.1] Let a ∈ A and p, q be projections in A. We say that a is invertible up to pair
(p, q) if there exists some b ∈ A such that

(1 − q)a(1 − p)b = 1 − q, b(1 − q)a(1 − p) = 1 − p.

We refer to such b as almost inverse of a, or (p, q)-inverse of a.

Finally, we recall the definitions of Fredholm and semi-Fredholm elements in a unital C∗− algebra.

Definition 2.4. [16, Definition 2.2] [15, Definition 5] We say that a ∈ A is of Fredholm type (or abstract Fredholm
element) with respect to the ideal F if there are projections p, q ∈ F such that a is invertible up to (p, q). The index of
the element a (or abstract index) is the element of the group K(F ) defined by

ind(a) = ([p], [q]) ∈ K(F ),

or less formally
ind(a) = [p] − [q].

Definition 2.5. [15, Definition 5] Let a ∈ A.We say that a is an upper semi-Fredholm type element if a is invertible
up to pair (p, q) where p ∈ F . Similarly, we say that a is a lower semi-Fredholm type element, however in this case we
assume that q ∈ F (and not p).

Next, we recall the following two lemmas.

Lemma 2.6. [15, Lemma 1] Let a ∈ A and p, q ∈ F . Then a is invertible up to pair (p, q) if and only if a∗ is invertible
up to pair (q, p).

Lemma 2.7. [15, Lemma 2] Let a ∈ A and p, q, p′, q′ be projections inA. Suppose that p, q, p′ ∈ F . If a is invertible
up to pair (p, q) and also invertible up to pair (p′, q′), then q′ ∈ F . Similarly, if instead of p, q, p′ we have that
p, q, q′ ∈ F , then we must have that p′ ∈ F as well.
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From the proof of Lemma 2.7 we can also deduce the following corollaries.

Corollary 2.8. [15, Corollary 4] Let a ∈ A. If a is invertible both up to pair (p, q) and up to pair (p, q′), then q ∼ q′.

Corollary 2.9. Let a ∈ A. If a is invertible up to pairs (p, q) and (p′, q′) where p, p′ ∈ F , then there exist projections
q̃, q̃′, ˜̃q and ˜̃q′ in A such that ˜̃q, ˜̃q′ ∈ F , q̃ ˜̃q = q̃′ ˜̃q = 0, q ∼ q̃, q′ ∼ q̃′, q̃ + ˜̃q ∼ q̃′ + ˜̃q′ and a is invertible up
to pairs (p, q̃) and (p′′, q̃′) for some projection p′′ ∼ p′. A similar statement holds if we instead of p and p′ have
that q, q′ ∈ F , however, in this case there exist projections p̃, p̃′, ˜̃p, ˜̃p′ in A such that ˜̃p, ˜̃p′ ∈ F , p̃ ˜̃p = p̃′ ˜̃p′ = 0,
p ∼ p̃, p′ ∼ p̃′, p̃ + ˜̃p ∼ p̃′ + ˜̃p′ and a is invertible up to pairs (p̃, q) and (p̃′, q′′) for some projection q′′ ∼ q′.

Proof. By [16, Proposition 2.8] there exists projection q̃ inA such that q̃ ∼ q, q̃a(1 − p) = 0 and a is invertible
up to pair (p, q̃). Then, by the proof of Lemma 2.7, there is an approximate unit {pα} for F , projections p′′, q′′

in A and nets of projections {qα} and {q′′α } in A such that p′ ∼ p′′ ≤ pα for all α, q′′ ∼ q′, a is invertible up
to pair (p′′, q′′) and qα − q̃ ∼ pα − p, q′′α − q′′ ∼ pα − p′′ and q′′α ∼ qα. For any fixed α, set ˜̃q = qα − q̃, q̃′ = q′′,
˜̃q′ = q′′α − q′′. This proves the first statement.
The second statement can be proved by passing to the adjoints and applying Lemma 2.6.

Furthermore, we recall also the following definition regarding Hilbert modules.

Definition 2.10. [17, Definition 2.3.1] A closed submodule N in a Hilbert C∗-module M is called (topologically)
complementable if there exists a closed submodule L inM such thatN +L =M,N ∩L = 0.

By the symbol ⊕̃we denote the direct sum of modules as given in [17].
Thus, if M is a Hilbert C∗-module and M1,M2 are two closed submodules of M, we write M = M1⊕̃M2

if M1 ∩M2 = {0} and M1 +M2 = M. If, in addition M1 and M2 are mutually orthogonal, then we write
M =M1 ⊕M2.

Remark 2.11. If ⊓ ∈ B(A) is a (skew ) projection, then, since Im⊓ is closed, by [17, Theorem 2.3.3] we get that
Im⊓ is orthogonally complementable. Hence, every closed and complementable submodule M of A is orthogonally
complementable. The corresponding orthogonal projection onto M will be denoted by PM throughout the paper.
However, the assumption thatA is unital is indeed necessary. As the reviewer pointed out, for the counter example,
let M2(A) denote the C∗-algebra consisting of 2 by 2 matrices with coefficients inA and consider the C∗-subalgebra
B of M2(A) consisting of the diagonal matrices. Suppose that A has a proper two-sided ideal I. Take the Hilbert
B-submodule M consisting of all diagonal matrices with the upper entry fromA and the lower entry from I. Then it
can be decomposed into the direct topological sum of two Hilbert B-submodules, one consisting of all diagonal matrices
with equal entries from I, and one consisting of all diagonal matrices having arbitrary entries from A in the upper
corner and zero in the lower corner. The image of the skew projection from M to the first summand has closed range,
but the image of it is not an orthogonal direct summand.

Remark 2.12. If ⊓ ∈ B(A) has closed range and PIm⊓ ∈ F , then, since PIm⊓⊓ = ⊓ and F is an ideal, we get that
⊓ ∈ F .

At the end of this section we give also the following technical results.

Lemma 2.13. Let T ∈ B(A) and suppose that ImT is closed. Then Im(T∗T)1/2 is closed.

Proof. By the proof of [17, Theorem 2.3.3] we have that ImT∗ is closed when ImT is closed. In addition, ImT
is orthogonally complementable inA by [17, Theorem 2.3.3] . Let P denote the orthogonal projection onto
ImT. Then T = PT, hence T∗ = T∗P. It follows that ImT∗ = ImT∗P = ImT∗T, so ImT∗T is closed. Hence,

A = ImT∗T ⊕ ker T∗T

by [17, Theorem 2.3.3], and T∗T maps ImT∗T isomorphically onto itself, which gives that ((T∗T)1/2)|ImT∗T is
bounded below.
Next, it is obvious that ker T∗T = ker(T∗T)1/2. Indeed, if x ∈ ker T∗T, then

⟨(T∗T)1/2x, (T∗T)1/2x⟩ = ⟨(T∗T)x, x⟩ = 0,
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so ker T∗T ⊆ ker(T∗T)1/2,whereas the opposite inclusion is obvious. Thus we obtain that

A = ImT∗T ⊕ ker(T∗T)1/2,

so (T∗T)1/2(ImT∗T) = Im(T∗T)1/2. However, since ((T∗T)1/2)|ImT∗T is bounded below, we must have that
Im(T∗T)1/2 is closed.

Corollary 2.14. Let T ∈ B(A) and suppose that ImT is closed. Then T admits polar decomposition.

Proof. By Lemma 2.13 we have that Im(T∗T)1/2 is closed. Hence, by [17, Theorem 2.3.3] we get that ImT and
Im(T∗T)1/2 are orthogonally complementable, so T admits polar decomposition.

3. Axiomatic Fredholm theory in unital C∗ -algebras

We start with the following lemma.

Lemma 3.1. Let P̃, Q̃ ∈ Proj(A). Then P̃ ∼ Q̃ if and only if ImP̃ � ImQ̃.

Proof. Suppose that ImP̃ � ImQ̃ and let U be an isomorphism from ImP̃ onto ImQ̃. Set T := JUP̃ where
J : ImQ̃ → A is inclusion. Then T ∈ B(A) and ImT = ImQ̃ is closed. Hence, by Corollary 2.14 we
deduce that T admits polar decomposition. The partial isometry V from this decomposition satisfies that
V∗V = Pker T⊥ = P̃, and VV∗ = PImT = Q̃.
Conversely, if P̃ ∼ Q̃, then there exists some V ∈ A such that VV∗ = Q̃ and V∗V = P̃. Then Q̃VP̃ is the
desired isomorphism.

The next proposition will be the key tool for proving the results in the rest of this section.

Proposition 3.2. Let {Pα}α be an approximate unit for F consisting of orthogonal projections and N be a closed,
complementable submodule of A such that PN ∈ F . Then there exists some element α0 of the index net of the
approximate unit for F and a closed submodule M ofA such that Im(I − Pα0 ) ⊆M andA =M⊕̃N.

Proof. Choose α0 sufficiently large such that ∥ PN −Pα0 PN ∥< 1. Then we get that ∥ PN −PNPα0 PN ∥< 1 which
gives that PNPα0 PN is invertible in the corner C∗ - algebra PNAPN. It is not hard to deduce then that Pα0 |N

must be bounded below. So ImPα0 PN is closed, thus orthogonally complementable by [17, Theorem 2.3.3].
Let M = (ImPα0 PN)⊥. Then Im(I − Pα0 ) ⊆M.
Set P̃ to be the orthogonal projection onto ImPα0 PN. Then P̃ ≤ Pα0 and therefore P̃|N = P̃Pα0 |N

= Pα0 |N
. Since

Pα0 |N
is an isomorphism onto ImPα0 PN, it follows that P̃|N an isomorphism onto ImPα0 PN = ImP̃. It is then

not hard to deduce thatA =M⊕̃N.

The following three technical lemmas are also needed for the proofs of the main results later in this
section.

Lemma 3.3. Let N be a closed complementable submodule of A such that PN ∈ F . Suppose that F ∈ B(A) is such
that F|N is an isomorphism. Then F(N) is complementable and PF(N) ∈ F .

Proof. Since N is complementable, it is orthogonally complementable by Remark 2.11. Now, F(N) = ImFPN,
so by [17, Theorem 2.3.3], F(N) is complementable in A. Since F|N is an isomorphism onto F(N), we have
that PN ∼ PF(N) by Lemma 3.1.

Lemma 3.4. Let M,N be two closed, complementable submodules of A such that PN,PM ∈ F . Suppose that
M ∩N = {0} and that M +N is closed and complementable inA. Then PM⊕̃N ∈ F and [PM⊕̃N] = [PM] + [PN].

Proof. Note first that by Remark 2.11 the submodules M,N and M⊕̃N are orthogonally complementable
in A. Since M is orthogonally complementable and M ⊆ M⊕̃N, by [9, Lemma 2.6] we have that M is
orthogonally complementable in M⊕̃N. Let R be the orthogonal complement of M in M⊕̃N. Then, since
M⊕̃N = M ⊕ R, it is clear that R � N. By Lemma 3.1 PR ∼ PN ∈ F . Indeed, since M⊕̃N is orthogonally
complementable in A, then R is orthogonally complementable in A. Now, we have PM⊕̃N = PM + PR ∈ F .
Moreover, [PM⊕̃N] = [PM] + [PR] = [PM] + [PN], as PR ∼ PN.
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Lemma 3.5. Let F ∈ B(A) and suppose that

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

is a decomposition with respect to which F has the matrix
(
F1 0
0 F4

)
where F1 is an isomorphism. Then, with respect

to the decomposition

A = N⊥1 ⊕N1
F
−→ F(N⊥1 )⊕̃N2 = A,

F has the matrix
(
F̃1 0
0 F4

)
where F̃1 is an isomorphism.

Proof. LetA =M1⊕̃N1
F
−→M2⊕̃N2 = A be a decomposition with respect to which F has the matrix

(
F1 0
0 F4

)
where F1 is an isomorphism. Observe first that, since N1 is orthogonally complementable by Remark 2.11,
then

A =M1⊕̃N1 = N1 ⊕N⊥1 ,

so ⊓M1 |N⊥1

is an isomorphism from N⊥1 onto M1, where ⊓M1 |N⊥1

stands for the projection onto M1 along N1

restricted to N⊥1 . Observe next that, since F(M1) =M2 and F(N1) ⊆ N2, we have⊓M2 F|N⊥1
= F⊓M1 |N⊥1

,where⊓M2

stands for the projection onto M2 along N2. Since F|M1
is an isomorphism, it follows that ⊓M2 F|N⊥1

= F⊓M1 |N⊥1

is an isomorphism as a composition of isomorphisms. Hence, with respect to the decomposition

A = N⊥1 ⊕N1
F
−→M2⊕̃N2 = A,

F has the matrix
(
F̃1 0
F̃3 F4

)
where F̃1 = ⊓M2 F|N⊥1

is an isomorphism. Using the technique of diagonalization as

in the proof of [17, Lemma 2.7.10], we deduce that there exists an isomorphism V such that

A = N⊥1 ⊕N1
F
−→ V(M2)⊕̃V(N2) = A

is a decomposition with respect to which F has the matrix
( ˜̃F1 0

0 F4

)
where ˜̃F1 is an isomorphism. Moreover,

by the construction of V we have V(N2) = N2. Hence

A = F(N⊥1 )⊕̃N2.

Thus, with respect to the decomposition

A = N⊥1 ⊕N1
F
−→ F(N⊥1 )⊕̃N2 = A,

F has the desired matrix.

In exactly the same way we can prove the following corollary.

Corollary 3.6. Let F ∈ B(A) and suppose that

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

is a decomposition with respect to which F has the matrix
(
F1 0
0 F4

)
where F1 is an isomorphism. If there exists a

closed submodule M̃ ofA such thatA = M̃⊕̃N1, then F has the matrix
(
F̃1 0
0 F4

)
with respect to the decomposition

A = M̃⊕̃N1
F
−→ F(M̃)⊕̃N2 = A

where F̃1 is an isomorphism.
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Thanks to Lemma 3.5 we obtain the following useful characterization of invertibility up to a pair of
orthogonal projections.

Lemma 3.7. Let F ∈ A. Then F has the matrix
(
F1 0
0 F4

)
with respect to the decomposition

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

where F1 is an isomorphism if and only if F is invertible up to (P,Q) where P ∼ PN1 and Q ∼ PN2 .

Proof. By the proof of Lemma 3.5, if F has a decomposition

A =M1⊕̃N1
F
−→M2⊕̃N2 = A,

with respect to which F has the matrix then
(
F1 0
0 F4

)
where F1 is an isomorphism, then F is invertible up to

pair ( PN1 ,PF(N⊥1 )⊥ ). However, we have

A = F(N⊥1 ) ⊕ F(N⊥1 )⊥ = F(N⊥1 )⊕̃N2,

hence N2 � F(N⊥1 )⊥. By Lemma 3.1 , PN2 ∼ PF(N⊥1 )⊥ .
Conversely, if F is invertible up to pair of orthogonal projections (P,Q), then by the proof of [17, Lemma
2.7.10], F has decomposition

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

where N1 � ImP and N2 � ImQ. By Lemma 3.1 we have that PN1 ∼ P and PN2 ∼ Q.

We introduce now the following definition.

Definition 3.8. Let F ∈ B(A).We say that F ∈ MKΦ(A) if there exists a decomposition

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

with respect to which F has the matrix
(
F1 0
0 F4

)
where F1 is an isomorphism and PN1 ,PN2 ∈ F .We put then

indexF = [PN1 ] − [PN2 ]

in K(F ).

Notice that since N1 and N2 are closed and complementable, by Remark 2.11 they are orthogonally
complementable, hence PN1 and PN2 are well defined. It remains to prove that the index is well defined.

Theorem 3.9. The index is well defined.

Proof. Let

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

A =M′

1⊕̃N′1
F
−→M′

2⊕̃N′2 = A

be two MKΦ -decompositions for F. By Proposition 3.2 there exist closed submodules M̃1, M̃1
′ of A

such that A = M̃1⊕̃N1 = M̃1
′
⊕̃N′1 and Im(I − Pα) ⊆ M̃1 ∩ M̃1

′ for sufficiently large α. By Corollary 3.6 the

operator F has the matrices
(
F1 0
0 F4

)
,

(
F′1 0
0 F′4

)
,with respect to the decompositions

M̃1⊕̃N1
F
−→ F(M̃1)⊕̃N2,
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M̃1
′
⊕̃N′1

F
−→ F(M̃1

′)⊕̃N′2,

respectively, where F1 and F′1 are isomorphisms.
Now, since Im(I−Pα) ⊆ M̃1 ∩ M̃1

′
, by [9, Lemma 2.6] there exist closed submodules R and R′ ofA such that

M̃1 = Im(I − Pα) ⊕ R and M̃1
′
= Im(I − Pα) ⊕ R′. As in the proof of [17, Lemma 2.7.13] we obtain newMKΦ

- decompositions

A = Im(I − Pα)⊕̃R⊕̃N1
F
−→ F(Im(I − Pα))⊕̃F(R)⊕̃N2 = A,

A = Im(I − Pα)⊕̃R′⊕̃N′1
F
−→ F(Im(I − Pα))⊕̃F(R′)⊕̃N′2 = A

for the operator F. Indeed, since

A = M̃1⊕̃N1 = Im(I − Pα)⊕̃R⊕̃N1 = Im(I − Pα) ⊕ Im Pα,

we have that R⊕̃N1 � Im Pα. Hence PR⊕̃N1 ∼ Pα by Lemma 3.1, so PR⊕̃N1 ∈ F . Since PR ≤ PR⊕̃N1 , it follows
that PR ∈ F (as PR = PRPR⊕̃N1 and F is an ideal). Similarly, PR′⊕̃N′1

∼ Pα and thus PR′ ,PR′⊕̃N′1
∈ F . Then, by

Lemma 3.3, as F|R and F|R′ are isomorphisms, we get that PF(R),PF(R′) ∈ F . Hence, by Lemma 3.4 we obtain
that PF(R)⊕̃N2 , PF(R)⊕̃N′2

∈ F and [PF(R)⊕̃N2 ] = [PF(R)] + [PN2 ], [PF(R′)⊕̃N′2
] = [PF(R′)] + [PN′2 ].

Next, since PR ∼ PF(R) and PR′ ∼ PF(R′) we have that [PF(R)] = [PR] and [PF(R′)] = [PR′ ]. By Lemma 3.4 we also
have [Pα] = [PR⊕̃N1 ] = [PR] + [PN1 ] and [Pα] = [PR′⊕̃N′1

] = [PR′ ] + [PN′1 ].
On the other hand, since

A = F(Im Pα)⊕̃F(R)⊕̃N2 = F(Im Pα)⊕̃F(R′)⊕̃N′2,

we have that F(R)⊕̃N2 � F(R′)⊕̃N′2, hence, by Lemma 3.1 and Lemma 3.4 we get that [PF(R)] + [PN2 ] =
[PF(R′)] + [PN′2 ].

Putting all this together, we obtain that

[PR⊕̃N1 ] − [PF(R)⊕̃N2 ] = [PR′⊕̃N′1
] − [PF(R′)⊕̃N′2

],

however,
[PR⊕̃N1 ] − [PF(R)⊕̃N2 ] = [PR] + [PN1 ] − [PF(R)] − [PN2 ] = [PN1 ] − [PN2 ]

and similarly
[PR′⊕̃N′1

] − [PF(R′)⊕̃N′2
] = [PN′1 ] − [PN′2 ].

Thanks to the technical results which we derived so far, we can prove the next result in a similar way as
[17, Lemma 2.7.10] . For the convenience of readers, we give the full proof here.

Proposition 3.10. Let F,D ∈ MKΦ(A). Then DF ∈ MKΦ(A) and

index DF = index D + index F.

Proof. Let

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

be anMKΦ-decomposition for F. By Proposition 3.2 there exists some α0 and a closed submodule M̃ such
that Im(I−Pα0 ) ⊆ M̃ andA = M̃⊕̃N2. If⊓denotes the projection onto M̃ along N2, then⊓|M2

is an isomorphism

onto M̃. Let V be the operator with the matrix
(
⊓ 0
0 1

)
with respect to the decomposition

A =M2⊕̃N2
V
−→ M̃⊕̃N2 = A.
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Then V is an isomorphism onA, and with respect to the decomposition

A =M1⊕̃N1−→M̃⊕̃N2 = A,

the operator VF has the matrix
(
(VF)1 0

0 (VF)4

)
where (VF)1 is an isomorphism. Hence, index VF = index F.

Note that if
A =M′

1⊕̃N′1
D
−→M′

2⊕̃N′2 = A

is anMKΦ-decomposition for D, then

A = V(M′

1)⊕̃V(N′1)−→M′

2⊕̃N′2 = A

anMKΦ-decomposition for DV−1 and indexDV−1 = indexD.This follows from Lemma 3.3 since V(N′1) � N′1,
hence PV(N′1) ∼ PN′1 ∈ F . Now, since PV(N′1) ∈ F , by Proposition 3.2 we can find some α1 ≥ α0 and a closed
submodule M̃′ such thatA = M̃′

⊕̃V(N′1) and Im(I − Pα1 ) ⊆ M̃′. Then, by Corollary 3.6, the decomposition

A = M̃′
⊕̃V(N′1)−→DV−1(M̃′)⊕̃N′2 = A

is also anMKΦ-decomposition for DV−1. Moreover, Im(I − Pα1 ) ⊆ M̃ ∩ M̃′. By [9, Lemma 2.6] there exist
closed submodules R,R′ ⊆ A such that

M̃ = Im(I − Pα1 ) ⊕ R, M̃′ = Im(I − Pα1 ) ⊕ R′.

As in the first part of the proof of Theorem 3.9, we obtainMKΦ-decompositions

A = (VF)−1
1 (Im(I − Pα1 ))⊕̃((VF)−1

1 (R)⊕̃N1) VF
−→ Im(I − Pα1 )⊕̃(R⊕̃N2) = A,

A = Im(I − Pα1 )⊕̃(R′⊕̃V(N′1)) DV−1

−→ DV−1(Im(I − Pα1 ))⊕̃(DV−1(R′)⊕̃N′2) = A

for the operators VF and DV−1, respectively, where (VF)−1
1 (R) � R, R′ � DV−1(R′). Finally, since

A = Im(I − Pα1 )⊕̃R⊕̃N2 = Im(I − Pα1 )⊕̃R′⊕̃V(N′1),

we get that R⊕̃N2 � R′⊕̃V(N′1). By Lemma 3.1 and Lemma 3.4 we deduce that index D+ index F=index
DV−1+ index VF = [PR′⊕̃V(N′1)] − [PDV−1(R′)⊕̃N′2

] + [PVF−1
1 (R)⊕̃N1

] − [PR⊕̃N2 ] = [PVF−1
1 (R)⊕̃N1

] − [PDV−1(R′)⊕̃N′2
].

On the other hand, it is clear that the operator DF has the matrix
(
(DF)1 (DF)2

0 (DF)4

)
with respect to the

decomposition

A = (VF)−1
1 (Im(I − Pα1 ))⊕̃((VF)−1

1 (R)⊕̃N1) DF
−→ DV−1(Im(I − Pα1 ))⊕̃(DV−1(R′)⊕̃N′2) = A,

where (DF)1 is an isomorphism (because DF = DV−1VF). Hence, as in the proof of [17, Lemma 2.7.10] we

can find an isomorphism U such that DF has the matrix
(
(DF)1 0

0 ˜(DF)4

)
with respect to the decomposition

A = (VF)−1
1 (Im(I − Pα1 ))⊕̃U((VF)−1

1 (R)⊕̃N1) DF
−→ DV−1(Im(I − Pα1 ))⊕̃(DV−1(R′)⊕̃N′2) = A.

Since U((VF)−1
1 (R)⊕̃N1) � (VF)−1

1 (R)⊕̃N1, by Lemma 3.1 we conclude that
index DF = index D+ index F.

Next, in a similar way as in the proof of [17, Lemma 2.7.13], we can prove the following lemma. For the
convenience of readers, we give the full proof here.

Lemma 3.11. Let F ∈ MKΦ(A) and K ∈ F . Then F + K ∈ MKΦ(A) and index (F + K) = index F.



S. Ivković / Filomat 38:19 (2024), 6663–6680 6672

Proof. Let F ∈ MKΦ(A) and

A =M1⊕̃N1
F
−→M2⊕̃N2 = A

be anMKΦ-decomposition for F. By Proposition 3.2, there exists some α0 and a closed submodule M̃ such

that Im(I − Pα0 ) ⊆ M̃ andA = M̃⊕̃N1. Then, by Corollary 3.6, F has the matrix
(
F1 0
0 F4

)
with respect to the

decomposition

A = M̃⊕̃N1
F
−→ F(M̃)⊕̃N2 = A,

where F1 is an isomorphism. Let K ∈ F . Since {Pα} is an approximate unit for F , we can find some α1 ≥ α0
such that ∥ KPα1 ∥≤∥ F−1

1 ∥
−1 .

We have that Im(I−Pα1 ) ⊆ Im(I−Pα0 ) ⊆ M̃, hence, by [9, Lemma 2.6] we obtain that M̃ = Im(I−Pα1 )⊕Rwhere
R = ImPα1 ∩ M̃. Since PR ≤ Pα1 , we have PR ∈ F .We get a decomposition A = F1(Im(I − Pα1 ))⊕̃F1(R)⊕̃N2.
Since F1 is an isomorphism, by Lemma 3.1 we get that PF1(R) ∼ PR, so PF1(R) ∈ F as PR ∈ F . Moreover, by
Lemma 3.4 we deduce that PF1(R)⊕̃N2 ∈ F and

[PF1(R)⊕̃N2 ] = [PF1(R)] + [PN2 ] = [PR] + [PN2 ].

With respect to the decomposition

A = Im(I − Pα1 )⊕̃R⊕̃N1
F
−→ F1(Im(I − Pα1 )) ⊕ F1(Im(I − Pα1 ))⊥ = A,

F has the matrix
(
F1 F̃2
0 F̃4

)
. Let

(
K1 K2
K3 K4

)
be the matrix of K with respect to the same decomposition. Then

∥ K1 ∥≤∥ K|Im Pα1
∥=∥ KPα1 ∥≤∥ F−1

1 ∥
−1 .

As in the proof of [17, Lemma 2.7.13] we can find isomorphismsU and V such that

A = Im(I − Pα1 )⊕̃(U(R)⊕̃U(N1)) F+K
−→ V(Im(I − Pα1 ))⊕̃(F1(R)⊕̃N2) = A

is an MKΦ-decomposition for the operator F + K. Indeed, by Lemma 3.4 we have that PR⊕̃N1 ∈ F and
[PR⊕̃N1 ] = [PR] + [PN1 ],whereas by Lemma 3.1 we get that PU(R⊕̃N1) ∼ PR⊕̃N1 . Hence, we deduce that

index(F + K) = [PU(R⊕̃N1)] − [PF1(R)⊕̃N2 ] = [PR] − [PN1 ] − [PR] − [PN2 ] = indexF.

Finally, in a similar way as in the proof of [17, Theorem 2.7.14], we can prove the next theorem. For the
convenience of readers, we give the full proof here.

Theorem 3.12. Let F,D,D′ ∈ B(A). If there exist some K1,K2 ∈ F such that

FD = I + K1, D′F = I + K2,

then F ∈ MKΦ(A).

Proof. As in the proof of [17, Theorem 2.7.14] we obtain from Lemma 3.11 an MKΦ-decomposition for
I + K1

A =M1⊕̃N1
I+K1
−→M2⊕̃N2 = A

and we let ⊓ be the projection onto N2 along M2. Then (I−⊓)F is an epimorphism onto M2 and D′(I−⊓)F =
I + K̃2 for some K̃2 ∈ F . This follows since ⊓ ∈ F by Remark 2.12, so D′ ⊓ F ∈ F because F is an ideal.
Hence D′(I − ⊓)F ∈ MKΦ(A) by Lemma 3.11, so there exists anMKΦ-decomposition

A =M1⊕̃N1
D′(I−⊓)F
−→ M2⊕̃N2 = A
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for D′(I − ⊓)F. By the same arguments as in the proof of [17, Theorem 2.7.14] we get that (I − ⊓)F|M1
is an

isomorphism onto (I − ⊓)F(M1) and ker(I − ⊓)F ⊆ N1. Since Im(I − ⊓)F = M2 and (I − ⊓)F is adjointable by
[17, Corollary 2.5.3], by [17, Theorem 2.3.3] we have that ker(I − ⊓)F is orthogonally complementable inA.
Hence, by [9, Lemma 2.6] we have that ker(I − ⊓)F is orthogonally complementable in N1. Thus,

A =M1⊕̃R⊕̃ker(I − ⊓)F,

where R is the orthogonal complement of ker(I − ⊓)F in N1. However, since ker(I − ⊓)F closed and
complementable in A, by Remark 2.11 ker(I − ⊓)F is orthogonally complementable in A. Hence, since
ker(I−⊓)F ⊆ N1 and PN1

∈ F ,we get that Pker(I−⊓)F ∈ F . Since Im(I−⊓)F, (which is equal to M2), is closed, it

follows that (I − ⊓)F|(M1⊕̃R)
is an isomorphism onto M2 = Im(I − ⊓). This gives that F has the matrix

(
F1 F2
F3 F4

)
with respect to the decomposition

A = (M1⊕̃R)⊕̃ker((I − ⊓)F) F
−→M2⊕̃N2 = A,

where F1 is an isomorphism. By the same arguments as in the proof of [17, Lemma 2.7.10] we can find
isomorphismsU and V ofA such that

A = (M1⊕̃R)⊕̃U(ker((I − ⊓)F)) F
−→ V(M2)⊕̃N2 = A

is a decomposition with respect to which F has the matrix
(
F̃1 0
0 F̃4

)
where F̃1 is an isomorphism. Since

Pker((I−⊓)F) ∈ F , by Lemma 3.3 we have that U(ker((I − ⊓)F)) is orthogonally complementable in A and
PU(ker((I−⊓)F)) ∈ F . Thus we have obtained anMKΦ-decomposition for the operator F.

Remark 3.13. By Lemma 3.7 it follows that our approach to Fredholm theory in unital C∗ -algebras is equivalent to
the approach established in [16].

4. Spectral Fredholm theory in von Neumann algebras

From now on and in the rest of this paper, A denotes a properly infinite von Neumann algebra acting
on a Hilbert space H.We let Proj0(A) denote the set of all finite projections inA, (i.e. those projections that
are not Murray von Neumann equivalent to any of its subprojections).
We recall the notion ofA-Fredholm operator, originally introduced by Breuer in [4], [5].

Definition 4.1. [16, Definition 3.1] A linear operator T ∈ A is said to beA-Fredholm if the following holds.
(i) Pker T ∈ Proj0(A), where Pker T is the projection onto the subspace ker T.
(ii) There is a projection E ∈ Proj0(A) such that Im(I − E) ⊆ ImT.
The second condition ensures that Pker T∗ also belongs to Proj0(A).

The index of anA-Fredholm operator T is defined as

indexT = dim(ker T) − dim(ker T∗) ∈ I(A).

Here, I(A) is the so called index group of a von Neumann algebra A defined as the Grothendieck group of the
commutative monoid of all representations of the commutantA′ generated by representations of the formA′ ∋ S 7→
ES = πE(S) for some E ∈ Proj0(A). For a subspace L, its dimension dimL is defined as the class[πPL ] ∈ I(A) of the
representation πPL , where PL is the projection onto L.

Next we recall the following characterization ofA-Fredholm operators.
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Lemma 4.2. [15, Lemma 22] Let A be a properly infinite von Neumann algebra. Then an operator T ∈ A is
A−Fredholm in the sense of Breuer if and only if there exist projections P,Q ∈ Proj0(A) such that T is invertible up
to (P,Q).

Let F = mwhere m is the norm closure of the set of all S ∈ A for which PImS ∈ Proj0(A). Then

{P ∈ m | P is projection } = Proj0(A). (1)

This relation has been used in the proof of Lemma 4.2.

In the rest of this section, we will denote byKΦ(A) the set of allA−Fredholm operators. We recall also
the following definition.

Definition 4.3. [15, Definition 9] LetA be a properly infinite von Neumann algebra and T ∈ A.We say that T is
upper semi−A−Fredholm if there exist projections P,Q inA such that T is invertible up to (P,Q) where P ∈ Proj0(A).
Similarly we say that T is lower semi−A−Fredholm, however, in this case we assume that Q ∈ Proj0(A).

Thanks to the relation (1) we obtain the following useful characterization of
semi−A−Fredholm operators.

Corollary 4.4. [15, Corollary 23] Let T ∈ A. Then T is upper (respectively lower) semi-Fredholm type element inA
with respect to m if and only if T is upper (respectively lower) semi−A−Fredholm.

In the sequel, we let M2(A) denote the von Neumann algebra consisting of 2 by 2 matrices with
coefficients inA. IfA is a properly infinite von Neumannn algebra, then M2(A) is also a properly infinite
von Neumannn algebra. For an operator T′ ∈ M2(A) we shall simply say that T′ is A−Fredholm if T′ is
M2(A)−Fredholm.
Now we will derive some technical properties of 2 by 2 matrices in a von Neumann algebra that are needed
for proving Proposition 4.9, which is the main result in this section. We start with the following auxiliary
technical lemma.

Lemma 4.5. Let A be a properly infinite von Neumann algebra and P,Q ∈ Proj(A). Then
((

P 0
0 0

)
,

(
0 0
0 Q

))
∈ Proj0(M2(A)) if and only if P,Q ∈ Proj0(A).

Proof. Let P ∈ Proj0(A) and assume that there exists a subprojection P̃′ of
(
P 0
0 0

)
such that P̃′ ∼

(
P 0
0 0

)
.

Since P̃ is a subprojection of
(
P 0
0 0

)
, then P̃′ =

(
P′ 0
0 0

)
for some P′ ≤ P. Let V ∈ M2(A) such that VV∗ =(

P 0
0 0

)
and V∗V =

(
P′ 0
0 0

)
. Then, if we put P̃ =

(
P 0
0 0

)
, we get that P̃VP̃′V∗P̃ = P̃VV∗VV∗P̃ = P̃ and

P̃′V∗P̃VP̃′ = P̃′V∗VV∗VP̃′ = P̃′. Moreover, if we write V as
(
V1 V2
V3 V4

)
for some V1,V2,V3,V4 ∈ A, we get

that P̃VP̃′ =
(
PV1P′ 0

0 0

)
. Hence P = (PV1P′)(PV1P′)∗ and P′ = (PV1P′)∗(PV1P′), so P ∼ P′ which is a

contradiction. Thus, we must have that
(
P 0
0 0

)
∈ Proj0(M2(A)). Conversely, it is obvious that if P ∈ Proj(A)

and P ∼ P′ for some P′ ≤ P, then
(
P 0
0 0

)
∼

(
P′ 0
0 0

)
. Hence, if

(
P 0
0 0

)
∈ Proj0(M2(A)), then P ∈ Proj0(A).

Similarly we treat the case with
(
0 0
0 Q

)
.

Next we recall also the following properties of finite operators in von Neumann algebras.
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Lemma 4.6. [4],[5] Let A be a properly infinite von Neumannn algebra and T ∈ A. Then PImT ∈ Proj0(A) if and
only if PImT∗ ∈ Proj0(A) and in this case PImS1TS2

∈ Proj0(A) for all S1,S2 ∈ A.

Proof. If T ∈ A, then PImT ∼ Pker T⊥ . Since Pker T⊥ = PImT∗ , the first statement follows. Now, if S2 ∈ A, then
PImTS2

≤ PImT, hence we must have PImTS2
∈ Proj0(A) if PImT ∈ Proj0(A). By the first statement we also

get that PImS∗2T∗ ∈ Proj0(A). Hence, if in addition S1 ∈ A, by repeating the same argument we get that
PImS∗2T∗S∗1

∈ Proj0(A), so PImS1TS2
∈ Proj0(A).

From Lemma 4.6 we deduce the following useful corollary.

Corollary 4.7. Let T =
(
T1 T2
T3 T4

)
be an element of M2(A) where A is a properly infinite von Neumann algebra. If

PImT ∈ Proj0(M2(A)), then PImT1
,PImT4

∈ Proj0(A).

Proof. By Lemma 4.6, if T̃1 =

(
T1 0
0 0

)
, then P

ImT̃1
∈ Proj0(M2(A)) if PImT ∈ Proj0(M2(A)). This is because

T̃1 =

(
1 0
0 0

)
T
(
1 0
0 0

)
.However, P

ImT̃1
=

(
PImT1

0
0 0

)
, hence by Lemma 4.5, PImT1

∈ Proj0(A). Similarly we can

prove that PImT4
∈ Proj0(A).

We have also the following corollary.

Corollary 4.8. LetA be a properly infinite von Neumann algebra and T,S ∈ A. If T isA−Fredholm, then
(
T 0
0 1

)
isA−Fredholm. Similarly, if S isA−Fredholm, then

(
1 0
0 S

)
isA−Fredholm.

Proof. If T is invertible up to (P,Q) for some projections P and Q, then
(
T 0
0 1

)
is invertible up to

((
P 0
0 0

)
,

(
Q 0
0 0

))
.

Similarly, if S is invertible up to (P′,Q′), for some projections P′ and Q′, then
(
1 0
0 S

)
is invertible up to((

0 0
0 P′

)
,

(
0 0
0 Q′

))
. Hence, by applying Lemma 4.5, we deduce the statements in the corollary.

Now we are ready to give the main result in this section, which is a generalization of the result by
Ðord̄ević in [6] in the setting of Fredholm operators in von Neumann algebras.

Proposition 4.9. Let A be a properly infinite von Neumann algebra and T,S ∈ A. For fixed S,T ∈ A, let
MC ∈M2(A) be given by

MC =

(
T C
0 S

)
where C varies overA. Set

σe f (MC) = {λ ∈ C |MC − λI is notA− Fredholm},

σe f (T) = {λ ∈ C | T − λI is notA− Fredholm},

σe f (S) = {λ ∈ C | S − λI is notA− Fredholm}.

Then σe f (T) ∪ σe f (S) = σe f (MC) ∪ (σe f (T) ∩ σe f (S)) for all C ∈ A.

Proof. By applying Corollary 4.7, we may show that σe f (MC) ⊆ σe f (T)∪ σe f (S) for all C ∈ A in a similar way
as in the proof of [12, Proposition 3.1].
If σe f (MC) = σe f (T) ∪ σe f (S), then there is nothing to prove. Suppose now that there exists some C ∈ A
such that the inclusion σe f (MC) ⊂ σe f (T) ∪ σe f (S) is proper, As in [6], we write MC as MC = S′C′T′ where
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S′ =
(
1 0
0 S

)
, C′ =

(
1 C
0 1

)
and T′ =

(
T 0
0 1

)
. Assume that MC is A−Fredholm and let P,Q ∈ Proj0(M2(A))

such that MC is invertible up to (P,Q). By [15, Corollary 6], there is some R ∈ Proj(M2(A)) such that T′ is
invertible up to (P,R),S′C′ is invertible up to (R,Q) and (I −R)T′(I −P) = T′(I −P). Since C′ is invertible, we
have that R̃ ∼ R,where R̃ is the orthogonal projection onto C′R(H2).Moreover, H2 = C′(I−R)(H2)⊕̃C′R(H2).
If R̃′ denotes the orthogonal projection onto C′(I−R)(H2)⊥, then obviously R̃′ maps C′R(H2) isomorphically
onto R̃′(H2). Thus R̃′ ∼ R̃ ∼ R.Now, C′ is invertible up to (R, R̃′) and (I − R̃′)C′(I − R) = C′(I − R). Since S′C′

is invertible up to (R,Q),we can deduce that S′ is invertible up to (R̃′,Q). Indeed, let B be (R, R̃′)-inverse of
C′ and B̃ be (R,Q)-inverse of S′C′. Then we get

C′(I − R)B̃(I −Q)S′(I − R̃′) = C′(I − R)B̃(I −Q)S′(I − R̃′)C′(I − R)B =

C′(I − R)B̃(I −Q)S′C′(I − R)B = C′(I − R)B = (I − R̃′)C′(I − R)B = I − R̃′,

and
(I −Q)S′(I − R̃′)C′(I − R)B̃ = (I −Q)S′C′(I − R)B̃ = (I −Q),

so C′(I − R)B̃ is an (R̃′,Q)−inverse of S′. Hence, in particular we have that T′ is left invertible up to P and

S′ is right invertible up to Q. If we write P and Q as P =
(
P1 P2
P3 P4

)
, Q =

(
Q1 Q2
Q3 Q4

)
, where P j,Q j ∈ A for

j ∈ {1, . . . 4}, then it follows that FT = 1 − P1 and SD = 1 − Q4 for some operators F,D ∈ A. By Corollary
4.7 we have that P1,Q4 ∈ m, hence, by [15, Lemma 10] and Corollary 4.4 we deduce that T and S are upper
semi−A−Fredholm and lower semi−A−Fredholm, respectively.

If p, q ∈ Proj0(A) and r, r′ ∈ Proj(A) such that T invertible up to (p, r) and S is invertible up to (r′, q), then,

obviously, T′ is invertible up to
((

p 0
0 0

)
,

(
r 0
0 0

))
and S′ is invertible up to

((
0 0
0 r′

)
,

(
0 0
0 q

))
. By Lemma 4.5

it follows that ((
p 0
0 0

)
,

(
0 0
0 q

))
∈ Proj0(M2(A)).

Hence, by Corollary 2.9, we deduce that there exist projections

E, Ẽ,E′, Ẽ′,L, L̃,L′, L̃′ ∈ A

such that Ẽ, Ẽ′, L̃, L̃′ are finite, EẼ = E′Ẽ′ = LL̃ = L′L̃′ = 0, R ∼ E,
(
r 0
0 0

)
∼ E′, R̃′ ∼ L,

(
0 0
0 r′

)
∼ L′,

E + Ẽ ∼ E′ + Ẽ′ and L + L̃ ∼ L′ + L̃′.
Suppose now that T is A−Fredholm. Then by Lemma 2.7 and by (1), we must have that r ∈ Proj0(A).

Hence, by Lemma 4.5 we get that
(
r 0
0 0

)
is finite, so E′ ∈ Proj0(M2(A)), as E′ ∼

(
0 0
0 r

)
,which gives that E′+Ẽ′

is finite. Therefore, E+ Ẽ ∈ Proj0(M2(A)), hence E ∈ Proj0(M2(A)) since Ẽ is finite. However, L ∼ R̃′ ∼ R ∼ E,
so we get that L + L̃ is finite since L, L̃ ∈ Proj0(M2(A)). Thus, L′ + L̃′ ∈ Proj0(M2(A)) since L + L̃ ∼ L′ + L̃′,

so we must have that L′ ∈ Proj0(M2(A)) because L̃′ ∈ Proj0(M2(A)). It follows that
(
0 0
0 r′

)
∈ Proj0(M2(A))

as
(
0 0
0 r′

)
∼ L′, hence, by Lemma 4.5 we obtain that r′ ∈ Proj0(A). Since S is invertible up to (r′, q), we get

that S is A−Fredholm. Similarly we can show that T is A−Fredholm if S is A−Fredholm. If now λ ∈ C,
we can apply previous arguments to deduce that if MC − λI and T − λ1 are A−Fredholm, then S − λ1 is
A−Fredholm, and, similarly, if MC − λI and S − λ1, are A−Fredholm, then T − λ1 is A−Fredholm. This

is because MC − λI =
(
T − λ1 0

0 S − λ1

)
, so we can apply the previous arguments for arbitrary λ ∈ C.

Hence we can deduce that

(σe f (T) \ σe f (S)) \ σe f (MC) = ∅, (σe f (S) \ σe f (T)) \ σe f (MC) = ∅,
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which gives that σe f (T) ∪ σe f (S) = (σe f (T) ∩ σe f (S)) ∪ σe f (MC).

Next, we will consider isolated points of the spectra of operators in A.We wish to show that if 0 is an
isolated point of the spectrum of an A− Fredholm operator, then the corresponding spectral projection is
finite. To this end, we give first the following auxiliary technical lemma.

Lemma 4.10. Let N,M be a closed subspaces of H such that PN,PM ∈ A and D ∈ A such that D has the matrix(
D1 D2
D1 D4

)
with respect to the decomposition N ⊕ N⊥ → M ⊕M⊥, where D1 is an isomorphism. If S is the operator

with matrix
(
D−1

1 0
0 0

)
with respect to the decomposition M ⊕M⊥

→ N ⊕N⊥, then S ∈ A.

Proof. We have that
(
D1 0
0 0

)
= PMDPN ∈ A. Let U be the partial isometry from the polar decomposition of

D1.The operator Ũ given by the operator matrix
(
U 0
0 0

)
with respect to the decomposition N⊕N⊥ →M⊕M⊥

is obviously the partial isometry from the polar decomposition of the operator
(
D1 0
0 0

)
, hence Ũ ∈ A. Since

D1 is an isomorphism, then |D1| is invertible in B(M). Now,
∣∣∣∣∣ (D1 0

0 0

) ∣∣∣∣∣ = (
|D1| 0

0 0

)
, so

(
|D1| 0

0 0

)
∈ A.

Hence
(
|D1| 0

0 0

)
+ PM⊥ =

(
|D1| 0

0 1

)
∈ A. The operator

(
|D1| 0

0 1

)
is positive, invertible operator inA with its

inverse
(
|D1|

−1 0
0 1

)
. This follows from the functional calculus. Hence

(
|D1|

−1 0
0 1

)
∈ A since

(
|D1|

−1 0
0 1

)
=

PM

(
|D1| 0

0 1

)−1

PM. Next, notice that D−1
1 = |D1|

−1U∗. Hence
(
D−1

1 0
0 1

)
=

(
|D1|

−1 0
0 1

)
Ũ∗ ∈ A.

Corollary 4.11. Let N,M be a closed subspaces of H such that PN,PM ∈ A and D ∈ A such that D has the matrix(
D1 D2
D1 D4

)
with respect to the decomposition N ⊕N⊥ →M⊕M⊥. Then D is invertible up to (I − PN, I − PM) inA if

and only if D1 is an isomorphism.

We present also the following proposition.

Proposition 4.12. Let F be A− Fredholm and P0 be some skew or orthogonal projection in A. Suppose that F has

the matrix
(
F1 0
0 F4

)
with respect to the decomposition H = ker P0⊕̃ImP0, where F1 is an isomorphism. If P0 is not a

finite operator, then PImP0 FPImP0 ∈ KΦ(PImP0APImP0 ).

Proof. Since F isA− Fredholm, there exist some orthogonal projections P̃, Q̃ inA such that I− P̃ and I−Q̃ are
finite and such that F is invertible up to (I− P̃, I− Q̃). By [16, Proposition 2.8] we may without loss of gener-
ality assume that (I− Q̃)FP̃ = 0.We have P̃(H)⊥⊕ (ImP0∩ P̃(H)) = ker((I−P0)P̃).Hence PP̃(H)⊥⊕(ImP0∩P̃(H)) ∈ A.
Since ImP0 ∩ P̃(H) = Im((I − P̃)PP̃(H)⊥⊕(ImP0∩P̃(H))),we get that PImP0∩P̃(H) ∈ A.

Let N be the orthogonal complement of ImP0∩ P̃(H) in ImP0. Then PN = PImP0 −PImP0∩P̃(H) ∈ A.Now, I− P̃
is injective on N, hence ker((I − P̃)PN)⊥ = N. Therefore, PN ∼ P

Im(I−P̃)PN
. Since (I − P̃)PN is a finite operator

because (I − P̃) is a finite operator, we get that P
Im(I−P̃)PN

∈ Proj0(A). Hence PN ∈ Proj0(A).

Notice that, since (I − Q̃)FP̃ = 0 and F is invertible up to (I − P̃, I − Q̃), we have that F maps ImP̃
isomorphically onto F(P̃(H)) = Q̃(H). It follows that F maps ImP0∩ P̃(H) isomorphically onto F(ImP0∩ P̃(H)),
so F(ImP0∩P̃(H)) is closed. Since F(ImP0∩P̃(H)) = ImFPImP0∩P̃(H),we have that PF(ImP0∩P̃(H)) ∈ A. If M denotes
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the orthogonal complement of F(ImP0 ∩ P̃(H)) in ImP0, then, since PM = PImP0 − PF(ImP0∩P̃(H)), we have that
PM ∈ A.

Observe now that F has the matrix
(
F1 F2
0 F4

)
,with respect to the decomposition (ker P0⊕̃(ImP0∩P̃(H)))⊕̃N→

(ker P0⊕̃F(ImP0 ∩ P̃(H)))⊕̃M,where F1 is an isomorphism. Set

Ñ = ker P0⊕̃(ImP0 ∩ P̃(H)),

M̃ = ker P0⊕̃F(ImP0 ∩ P̃(H)).

Then, since M̃ = Im(I−P0+PF(ImP0∩P̃(H))P0) and Ñ = Im(I−P0+PImP0∩P̃(H)P0),we have that PM̃,PÑ ∈ A.Hence
PM̃⊥ ,PÑ⊥ ∈ A. Since H = Ñ⊕̃N, we have that PÑ⊥ is injective on N and Ñ⊥ = PÑ⊥ (N). Hence, we get that
ker PÑ⊥PN = N⊥ and ImPÑ⊥PN = Ñ⊥. Therefore, PN ∼ PÑ⊥ , so PÑ⊥ ∈ Proj0(A). Likewise, PM ∼ PM̃⊥ . Now,
since F maps Ñ isomorphically onto M̃, then by Corollary 4.11 we have that F is invertible up to (PÑ⊥ ,PM̃⊥ )
inA. Since F isA− Fredholm and PÑ⊥ ∈ Proj0(A), by Lemma 2.7 and (1) we must have that PM̃⊥ ∈ Proj0(A).
Thus, PM ∈ Proj0(A).
Consider next the von Neumann algebra PImP0APImP0 . If PImP0 is not finite, then PImP0APImP0 is also a properly
infinite von Neumann algebra. Now,

PM,PN ∈ Proj0(PImP0APImP0 ).

Since PImP0∩P̃(H) = PImP0 − PN,PF(ImP0∩P̃(H)) = PImP0 − PM and F maps ImP0 ∩ P̃(H) isomorphically onto
F(ImP0 ∩ P̃(H)), it follows by Corollary 4.11 that PImP0 FPImP0 , which is equal to FPImP0 , is invertible up to
(PN,PM) in PImP0APImP0 . Hence

PImP0 FPImP0 ∈ KΦ(PImP0APImP0 ).

We can now deduce the desired result concerning spectral projections as a corollary of Proposition 4.12.

Corollary 4.13. Let F ∈ A and α be an isolated point of σ(F). If F − αI is A− Fredholm and P0 is the spectral
projection corresponding to α, then P0 is finite operator.

Proof. Note that σ(F) inA is the same as the spectrum of F in B(H) sinceA is a von Neumann algebra. By [19,
Section 3] it follows that F−αI satisfies the conditions of Proposition 4.12 with respect to the decomposition
ker P0⊕̃ImP0 = H. Moreover, F − λI maps ImP0 isomorphically onto ImP0 for all λ , α. If PImP0 is not a
finite projection, by Proposition 4.12 we have that PImP0 (F − λI)PImP0 ∈ KΦ(PImP0APImP0 ) for all λ ∈ C. By
the similar arguments as in the proof of [19, Corollary 2.8] we can deduce that PImP0APImP0 consists only
of finite operators, so PImP0 is a finite operator, which contradicts the assumption in the beginning of this
proof that PImP0 is not finite.

The theory regarding isolated points of the spectrum of Fredholm operators on Hilbert and Banach spaces
is closely connected to the concept of Browder operators, as illustrated in [19, Theorem 3.1]. Motivated by
[14, Definition 5.7] we give now the following definition of generalizedA-Browder operators.

Definition 4.14. Let F ∈ A.We say that F is generalizedA-Browder if there exists a decomposition

H =M⊕̃N F
−→M⊕̃N = H

with respect to which F has the matrix
(
F1 0
0 F4

)
, where F1 is an isomorphism and such that PN ∈ Proj0(A).

We have the following lemma.

Lemma 4.15. Let F ∈ A. If F is generalizedA-Browder, then F isA-Fredholm.
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Proof. Let

H =M⊕̃N F
−→M⊕̃N = H

be an A-Browder decomposition for F. By the proof of Lemma 3.5, F has the matrix
(
F1 0
0 F4

)
with respect

to the decomposition

H = N⊥ ⊕N F
−→ F(N⊥)⊕̃N = H,

where F1 is an isomorphism. Hence, F(N⊥) is closed and F has he matrix
(
F1 F̃2
0 F̃4

)
, with respect to the

decomposition

H = N⊥ ⊕N F
−→ F(N⊥)⊕̃F(N⊥)⊥ = H.

Now, F(N⊥) = ImF(I − PN), so PF(N⊥) ∈ A since PN ∈ A. By Corollary 4.11 we deduce that F is invertible up
to (PN, I − PF(N⊥)) in A. Since H = F(N⊥)⊕̃N, it follows that I − PF(N⊥) maps N isomorphically onto F(N⊥)⊥.
Thus we get that F(N⊥)⊥ = Im(I − PF(N⊥))PN and N⊥ = ker((I − PF(N⊥))PN), which gives that PN ∼ PF(N⊥)⊥ .
Hence I − PF(N⊥) ∈ Proj0(A) because PN ∈ Proj0(A), so F isA-Fredholm by Lemma 4.2.

The next corollary is motivated by [19, Theorem 3.1].

Corollary 4.16. Let F ∈ A and suppose that 0 is an isolated point of σ(F). Then F isA-Fredholm if and only if F is
generalizedA-Browder.

Proof. The implication in one direction follows from Corollary 4.13, whereas the implication in the other
direction follows from Lemma 4.15.
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