DC FieldValueLanguage
dc.contributor.authorKurilić, Miloš S.en_US
dc.contributor.authorTodorčević, Stevoen_US
dc.date.accessioned2024-06-27T10:52:07Z-
dc.date.available2024-06-27T10:52:07Z-
dc.date.issued2024-12-01-
dc.identifier.issn0168-0072-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5333-
dc.description.abstractThe poset of copies of a relational structure X is the partial order P(X):=〈{Y⊂X:Y≅X},⊂〉 and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, BX:=rosqP(X)) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: Q (the rational line), S(2) (the circular tournament), and T∞ (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs S(3), Q[In], S(2)[In] and T∞[In] from Cherlin's list. If GRado (resp. Qn) denotes the countable homogeneous universal graph (resp. n-labeled linear order), it turns out that P(T∞)≅P(GRado) and that P(Qn) densely embeds in P(S(n)), for n∈{2,3}. Consequently, BX≅ro(S⁎π), where S is the poset of perfect subsets of R and π an S-name such that 1S⊩“π is a separative, atomless and σ-closed forcing” (thus 1S⊩“π≡forc(P(ω)/Fin)+”, under CH), whenever X is a countable structure equimorphic with Q, Qn, S(2), S(3), Q[In] or S(2)[In]. Also, BX≅ro(S⁎π), where 1S⊩“π is an ω-distributive forcing”, whenever X is a countable graph containing a copy of GRado, or a countable tournament containing a copy of T∞, or X=T∞[In].en_US
dc.publisherElsevieren_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectDense local order | Poset of copies | Random tournament | Sacks forcing | Ultrahomogeneous tournament | σ-Closed forcingen_US
dc.titlePosets of copies of countable ultrahomogeneous tournamentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2024.103486-
dc.identifier.scopus2-s2.0-85195831096-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage103486-
dc.relation.issue10-
dc.relation.volume175-
dc.description.rank~M21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.orcid0000-0003-4543-7962-
Files in This Item:
File Description SizeFormat
STodorcevic.pdf399.94 kBAdobe PDFView/Open
Show simple item record

Page view(s)

28
checked on Nov 24, 2024

Download(s)

3
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons