DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kurilić, Miloš S. | en_US |
dc.contributor.author | Todorčević, Stevo | en_US |
dc.date.accessioned | 2024-06-27T10:52:07Z | - |
dc.date.available | 2024-06-27T10:52:07Z | - |
dc.date.issued | 2024-12-01 | - |
dc.identifier.issn | 0168-0072 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5333 | - |
dc.description.abstract | The poset of copies of a relational structure X is the partial order P(X):=〈{Y⊂X:Y≅X},⊂〉 and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, BX:=rosqP(X)) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: Q (the rational line), S(2) (the circular tournament), and T∞ (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs S(3), Q[In], S(2)[In] and T∞[In] from Cherlin's list. If GRado (resp. Qn) denotes the countable homogeneous universal graph (resp. n-labeled linear order), it turns out that P(T∞)≅P(GRado) and that P(Qn) densely embeds in P(S(n)), for n∈{2,3}. Consequently, BX≅ro(S⁎π), where S is the poset of perfect subsets of R and π an S-name such that 1S⊩“π is a separative, atomless and σ-closed forcing” (thus 1S⊩“π≡forc(P(ω)/Fin)+”, under CH), whenever X is a countable structure equimorphic with Q, Qn, S(2), S(3), Q[In] or S(2)[In]. Also, BX≅ro(S⁎π), where 1S⊩“π is an ω-distributive forcing”, whenever X is a countable graph containing a copy of GRado, or a countable tournament containing a copy of T∞, or X=T∞[In]. | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Annals of Pure and Applied Logic | en_US |
dc.rights | Attribution-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Dense local order | Poset of copies | Random tournament | Sacks forcing | Ultrahomogeneous tournament | σ-Closed forcing | en_US |
dc.title | Posets of copies of countable ultrahomogeneous tournaments | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.apal.2024.103486 | - |
dc.identifier.scopus | 2-s2.0-85195831096 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 103486 | - |
dc.relation.issue | 10 | - |
dc.relation.volume | 175 | - |
dc.description.rank | ~M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
STodorcevic.pdf | 399.94 kB | Adobe PDF | View/Open |
Page view(s)
28
checked on Nov 24, 2024
Download(s)
3
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License