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The poset of copies of a relational structure X is the partial order P(X) := 〈{Y ⊂
X : Y ∼= X}, ⊂〉 and each similarity of such posets (e.g. isomorphism, forcing equiv-
alence = isomorphism of Boolean completions, BX := ro sqP(X)) determines a 
classification of structures. Here we consider the structures from Lachlan’s list of 
countable ultrahomogeneous tournaments: Q (the rational line), S(2) (the circular 
tournament), and T∞ (the countable homogeneous universal tournament); as well 
as the ultrahomogeneous digraphs S(3), Q[In], S(2)[In] and T∞[In] from Cherlin’s 
list.
If GRado (resp. Qn) denotes the countable homogeneous universal graph (resp. n-
labeled linear order), it turns out that P(T∞) ∼= P(GRado) and that P(Qn) densely 
embeds in P(S(n)), for n ∈ {2, 3}.
Consequently, BX

∼= ro (S ∗ π), where S is the poset of perfect subsets of R and π
an S-name such that 1S � “π is a separative, atomless and σ-closed forcing” (thus 
1S � “π ≡forc (P (ω)/Fin)+”, under CH), whenever X is a countable structure 
equimorphic with Q, Qn, S(2), S(3), Q[In] or S(2)[In].
Also, BX

∼= ro (S ∗ π), where 1S � “π is an ω-distributive forcing”, whenever X is a 
countable graph containing a copy of GRado, or a countable tournament containing 
a copy of T∞, or X = T∞[In].

© 2024 Elsevier B.V. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

If X and Y are relational structures of the same language we will write X ↪→ Y iff there is an embedding 
(isomorphism onto a substructure) f : X → Y . By P (X) we denote the set {Y ⊂ X : Y ∼= X} of copies of 
X inside X; the partial ordering 〈P (X), ⊂〉 will be called the poset of copies of X and shortly denoted by 
P (X), whenever the context admits.
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It is easy to see that the correspondence X �→ BX (where BX is the Boolean completion of the separative 
quotient of the poset P (X), ro sq P (X)) extends to a functor from the category of all relational structures and 
isomorphisms to its subcategory of all homogeneous complete Boolean algebras and, defining two relational 
structures X and Y to be similar iff BX

∼= BY , we obtain a coarse classification of relational structures (see 
[8]). The position of this similarity in the hierarchy of set-theoretical and model-theoretical similarities of 
structures was investigated in [6,9]; in particular, for relational structures X and Y we have:

X � Y ⇒ P (X) ≡forc P (Y ) ⇔ BX
∼= BY , (1)

where � denotes the equimorphism (bi-embedability) relation (X � Y iff X ↪→ Y and Y ↪→ X) and ≡forc

the forcing equivalence of posets. So, the mentioned classification of structures can be explored using the 
methods of set-theoretic forcing.

In this paper we continue the investigation of countable ultrahomogeneous relational structures in this 
context. We recall that a relational structure X is called ultrahomogeneous iff every isomorphism between 
finite substructures of X extends to an automorphism of X. By (1), a statement concerning the algebra BX

adjoined to a countable ultrahomogeneous structure X holds for all the structures from its equimorphism 
class. For example, if Q denotes the rational line, 〈Q, <Q〉, then BQ

∼= BX, for each countable non-scattered 
linear order X.

All the definitions and facts concerning ultrahomogeneous structures used in this paper can be found 
in the survey [15] of Macpherson. By GRado we denote the Rado graph and by Qn (for n ∈ N) the 
countable ultrahomogeneous n-labeled linear order, that is the structure Qn := 〈Q, <Q, A1, . . . , An〉, where 
{A1, . . . , An} is a partition of the set Q such that the sets Ai, i ≤ n, are dense in Q.

In order to state the known results which will be used in this paper, by S we denote the Sacks perfect 
set forcing (the set of perfect subsets of R ordered by the inclusion) and, in order to avoid repetition, we 
introduce the following notation for two properties of a countable relational structure X:

P1: P (X) ≡forc S ∗ π, for some S-name π for a preorder, where 1S � “π is a separative, atomless and 
σ-closed forcing”;

P2: P (X) ≡forc S ∗ π, for some S-name π for a preorder, where 1S � “π is an ω-distributive forcing”.

We recall that dense embeddings between posets preserve forcing equivalence. Thus, if X and Y are relational 
structures and the poset P (X) densely embeds into P (Y ), then X has property P1 iff Y does (and similarly 
for P2). This argument will be used in several places in the text.

Fact 1.1. Let sh(S) denote the size of the continuum in the Sacks extension (the cardinal κ such that 1S �
c = κ̌) and let X be a countable relational structure.

(a) P1 implies P2;
(b) If P1 is true and sh(S) = ℵ1, then 1S � “π ≡forc (P (ω)/ Fin)+”;
(c) CH and, more generally, the equality b = ℵ1 implies that sh(S) = ℵ1.

Proof. Since each σ-closed forcing is ω-distributive (a) is true. It is a folklore fact that under CH each sep-
arative, atomless and σ-closed forcing of size c is forcing equivalent to (P (ω)/ Fin)+. In the Sacks extension 
VS[G] we have |πG| = c = ℵ1, because in πG we can construct a copy of the binary tree <ω2 (since πG is 
atomless) and take a lower bound for each of its (c-many) branches (since πG is σ-closed). Thus (b) is true. 
For (c) see [17]. �
Theorem 1.2. (a) Each countable linear order containing a copy of Q has property P1 [10].

(b) Each countable n-labeled linear order containing a copy of Qn has property P1 [13].
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(c) Each countable graph containing a copy of GRado has property P2 [4,11,12].1

The aim of this paper is to complete the picture for countable ultrahomogeneous tournaments. We recall 
Lachlan’s classification of these structures [14]: Each countable ultrahomogeneous tournament is isomorphic 
to one of the following:

• Q, the rational line,
• S(2), the dense local order (the circular tournament),
• T∞, the countable random (i.e. homogeneous universal) tournament.

In Sections 2 and 3 we show that T∞ has P2 and that S(2) has P1 and in Section 4 we obtain similar 
results for infinitely many ultrahomogeneous digraphs from Cherlin’s list [1]: S(3), T [In] and In[T ], where 
T ∈ {Q, T∞, S(2)} and n ∈ N. More precisely, the main results of the paper are the following.

• P (T∞) ∼= P (GRado) and, hence, BT∞ ∼= BGRado .
Each countable tournament X containing a copy of T∞ has property P2.

• P (Q2) densely embeds in P (S(2)) and, hence, BS(2) ∼= BQ2 .
Each countable tournament X equimorphic with S(2) has property P1.

• P (Q3) densely embeds in P (S(3)) and, hence, BS(3) ∼= BQ3 .
Each countable digraph X equimorphic with S(3) has property P1.

The following elementary fact will be used in the sequel.

Fact 1.3. Let X = 〈X, ρ〉 be a countable ultrahomogeneous relational structure of a finite language. Then
(a) The theory Th(X) is ω-categorical and admits quantifier elimination;
(b) P (X) is equal to the set of domains of elementary substructures of X.

Proof. For (a) see [5], p. 350. If A ∈ P (X), then A |= Th(X) and, since by (a) Th(X) is model complete, 
A ≺ X. Conversely, if A = 〈A, ρ � A〉 ≺ X, then A ≡ X and, since Th(X) is ω-categorical, A ∼= X, that is, 
A ∈ P (X). �
2. The random tournament

The Rado graph If 〈G, ∼〉 is a graph and K ⊂ H ∈ [G]<ω, let us define

GH
K :=

{
v ∈ G \H : ∀k ∈ K (v ∼ k) ∧ ∀h ∈ H \K (v �∼ h)

}
.

(Clearly, G∅
∅ = G.) The Rado graph, GRado, [16] (the Erdős-Rényi graph [2], the countable random graph) 

is the unique (up to isomorphism) countable homogeneous universal2 graph and the Fraïssé limit of the 
amalgamation class of all finite graphs; see [3], where a proof of the following fact can be found.

Fact 2.1. For a countable graph G = 〈G, ∼〉 the following is equivalent
(g1) G ∼= GRado,

1 In [11] and [12] it was proved that P(GRado) ≡forc P ∗ π, where P is a poset which adds a generic real, has the 2-localization 
property (and, hence, the Sacks property) has the ℵ0-covering property (thus preserves ω1) and does not produce splitting reals 
and π is a P -name for a preorder such that 1P � “π is an ω-distributive forcing”. The forcing equivalence P(GRado) ≡forc S ∗ π
from P2 was proved in [4].
2 We recall that a countable graph (resp. tournament) is called (countably) universal iff it contains a copy of each countable 

graph (resp. tournament).
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(g2) GH
K �= ∅, whenever K ⊂ H ∈ [G]<ω,

(g3) |GH
K | = ω, whenever K ⊂ H ∈ [G]<ω.

The random tournament If 〈T, →〉 is a tournament, and K ⊂ H ∈ [T ]<ω, let

TH
K :=

{
v ∈ T \H : ∀k ∈ K (k → v) ∧ ∀h ∈ H \K (v → h)

}
.

(Clearly, T ∅
∅ = T .) The random tournament, T∞, is the unique (up to isomorphism) countable homogeneous 

universal tournament and the Fraïssé limit of the amalgamation class of all finite tournaments (see [3]).

Fact 2.2. For a countable tournament T = 〈T, →〉 the following is equivalent
(t1) T ∼= T∞,
(t2) TH

K �= ∅, whenever K ⊂ H ∈ [T ]<ω,
(t3) |TH

K | = ω, whenever K ⊂ H ∈ [T ]<ω.

Proof. (t1) ⇒ (t2). Let T = 〈T, →〉 ∼= T∞, K ⊂ H ∈ [T ]<ω and p �∈ H. Then T0 := 〈H ∪ {p}, ρ〉, where

ρ = (→� H) ∪ {〈k, p〉 : k ∈ K} ∪ {〈p, h〉 : h ∈ H \K},

is a finite tournament and, since the age of T is the class of all finite tournaments, there is an embedding 
f : T0 ↪→ T . Now the restriction ϕ := f−1 � f [H] is a finite partial isomorphism of T which maps f [H]
onto H and, by the ultrahomogeneity of T there is F ∈ Aut(T ) such that ϕ ⊂ F . Let v := F (f(p)). 
For k ∈ K we have 〈k, p〉 ∈ ρ and, hence, 〈f(k), f(p)〉 ∈→, which implies 〈F (f(k)), F (f(p))〉 ∈→. Since 
F (f(k)) = ϕ(f(k)) = f−1(f(k)) = k, we have 〈k, v〉 ∈→. Similarly, 〈v, h〉 ∈→, for all h ∈ H \K, and, thus, 
v ∈ TH

K .
(t2) ⇒ (t3). Suppose that (t2) is true and that TH

K = {v1, . . . , vn}. Then, by (t2) there is v ∈ T
H∪{v1,...,vn}
K

and, hence, v ∈ TH
K and v �∈ H ∪ {v1, . . . , vn}, which is a contradiction.

(t3) ⇒ (t1). Assuming (t3) we show first that for each n ∈ N each finite tournament A of size n embeds 
in T . For n = 1 the statement is obviously true. Suppose that it is true for n and that A = 〈A, ρ〉 is a 
tournament, where A = {a1, . . . an+1}. Then for A0 = 〈A0, ρ � A0〉, where A0 = {a1, . . . an}, there is an 
embedding f : A0 ↪→ T and if K := {i ≤ n : 〈ai, an+1〉 ∈ ρ}, by (t3) there is v ∈ T such that f(ai) → v, for 
each i ∈ K, and v → f(ai), for all i ∈ {1, . . . , n} \K. Thus f [A0] ∪ {v} is a copy of A in T .

Now we show that T has the 1-extension property. Let ϕ : H → T be a finite partial isomorphism, 
v ∈ T \ H and K := {k ∈ H : k → v}. By (t3) there is w ∈ T such that ϕ(k) → w, for all k ∈ K and 
w → ϕ(h), for all h ∈ H \K. Thus ϕ ∪ {〈v, w〉} is a finite partial isomorphism of T . �
Theorem 2.3. P (T∞) ∼= P (GRado) and, hence, BT∞ ∼= BGRado .

Each countable tournament containing a copy of T∞ has property P2.

Proof. W.l.o.g., we suppose that GRado = 〈ω, ∼〉 and define a binary relation → on the set ω in the following 
way: for m, n ∈ ω let

m → n ⇔ (m < n ∧m ∼ n) ∨ (m > n ∧m �∼ n). (2)

Since the relations ∼ and ∼c:= ω2\ ∼ are symmetric, by (2) we have

→= (< ∩ ∼) ∪ (<−1 ∩ ∼c) and →−1= (<−1 ∩ ∼) ∪ (< ∩ ∼c) (3)

Now we have: → ∩Δω = ∅ so the relation → is irreflexive, → ∩ →−1= ∅, and → is asymmetric and 
→ ∪ →−1=< ∪ <−1= ω2 \ Δω; thus the structure T := 〈ω, →〉 is a tournament.
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For a proof that T ∼= T∞, we check (t2) of Fact 2.2. If K ⊂ H ∈ [ω]<ω, then, by (g3) of Fact 2.1, there is 
v ∈ GH

K such that v > h, for all h ∈ H. Now, if k ∈ K, then k < v and k ∼ v so, by (2), k → v. If h ∈ H \K, 
then v > h and v �∼ h so, by (2) again, v → h. Thus v ∈ TH

K �= ∅, (t2) is true and T ∼= T∞ indeed.
In order to prove that

P (〈ω,∼〉) = P (〈ω,→〉) (4)

we take first A ∈ P (〈ω, ∼〉) and show that the countable tournament 〈A, →� A〉 satisfies (t2) of Fact 2.2. So, 
if K ⊂ H ∈ [A]<ω, then, since 〈A, ∼� A〉 ∼= GRado, by (g3) of Fact 2.1, there is v ∈ AH

K such that v > h, for 
all h ∈ H. Now, if k ∈ K, then k < v and k ∼ v so, by (2), k → v. If h ∈ H \K, then v > h and v �∼ h so, 
by (2) again, v → h. Thus 〈A, →� A〉 satisfies (t2) and 〈A, →� A〉 ∼= T∞, which means that A ∈ P (〈ω, →〉).

Conversely, we take A ∈ P (〈ω, →〉) and show that the graph 〈A, ∼� A〉 satisfies (g2) of Fact 2.1. So, if 
K ⊂ H ∈ [A]<ω, then, since 〈A, →� A〉 ∼= T∞, by (t3) of Fact 2.2, there is v ∈ AH

K such that v > h, for 
all h ∈ H. If k ∈ K, then k < v and k → v so, by (2), k ∼ v, that is v ∼ k. If h ∈ H \ K, then v > h

and v → h so, by (2) again, v �∼ h. Thus 〈A, ∼� A〉 satisfies (g2) and 〈A, ∼� A〉 ∼= GRado, which means that 
A ∈ P (〈ω, ∼〉).

So, since 〈ω, →〉 ∼= T∞ by (4) we have P (T∞) ∼= P (GRado) and, hence, P (T∞) ≡forc P (GRado). If X is 
a countable tournament and T∞ ↪→ X, then, by the universality of T∞, X ↪→ T∞, so X � T∞ and, hence, 
P (X) ≡forc P (T∞) ≡forc P (GRado) which, together with Theorem 1.2(c) implies that X has property 
P2. �
3. The dense local order

The countable homogeneous universal n-labeled linear order For n ∈ N let Ln = 〈R, α1, . . . , αn〉 be a 
relational language, where ar(R) = 2 and ar(αi) = 1, for i ≤ n. We recall that the Ln-structures of the 
form X = 〈X, <, A1, . . . , An〉, where < is a linear order on the set X and {A1, . . . , An} a partition of X, 
are called n-labeled linear orders. Since the Ln-structure Qn is ultrahomogeneous, the Ln-theory Tn saying 
that an Ln-structure X = 〈X, <, A1, . . . , An〉 is a model of Tn iff 〈X, <〉 is a dense linear order without 
end-points and {A1, . . . , An} a partition of X into dense subsets of 〈X, <〉 is ω-categorical. Consequently 
we have D ∈ P (Qn) iff 〈D, <Q� D, A1 ∩D, . . . , An ∩D〉 |= Tn, that is

Fact 3.1. D ∈ P (Qn) if and only if 〈D, <Q� D〉 is dense linear order without end points and the sets Ai∩D, 
for i ∈ {1, . . . , n}, are its dense subsets.

The dense local order S(2) If q1, q2 ∈ Q and q1 �= q2, then, since q1 − q2 �= kπ, for all k ∈ Z, eq1i and eq2i

are different and non-antipodal points of the unit circle S1 := {eti : t ∈ [0, 2π)} in the complex plane and 
S = {eqi : q ∈ Q} is a dense subset of S1. The dense local order is the tournament S(2) = 〈S, →〉, where

eq1i → eq2i ⇔ q2 − q1 ∈
⋃

k∈Z(2kπ, 2kπ + π), (5)

which means that the shorter oriented path from eq1i to eq2i is the anticlockwise oriented one. In order to 
simplify notation let L2 =: 〈R, α, β〉.

Clearly, {A, B} is a partition of the set S into the left and right part, where

A :=
{
eqi : q ∈

⋃
k∈Z(π2 + 2kπ, 3π

2 + 2kπ) ∩Q
}

and

B :=
{
eqi : q ∈

⋃
k∈Z(3π

2 + 2kπ, 5π
2 + 2kπ) ∩Q

}
.

So 〈S, →, A, B〉 is an L2-structure and the L2-formula
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λ(u, v) :=
[(

(α(u) ∧ α(v)) ∨ (β(u) ∧ β(v))
)
∧R(u, v)

]

∨
[(

(α(u) ∧ β(v)) ∨ (β(u) ∧ α(v))
)
∧R(v, u)

]
(6)

defines the tournament relation ρ := {〈x, y〉 ∈ S × S : 〈S, →, A, B〉 |= λ[x, y]} on the set S, which preserves 
→ between the elements of the same part, and reverses → between the elements of different parts, namely,

ρ =
[
→ ∩

(
(A×A) ∪ (B ×B)

)]
∪
[
→−1 ∩

(
(A×B) ∪ (B ×A)

)]
. (7)

Note that, by the comment above (7), the initial relation → is defined by the formula λ in the L2-structure 
Y := 〈S, ρ, A, B〉, that is

∀x, y ∈ S
(
x → y ⇔ 〈S, ρ,A,B〉 |= λ[x, y]

)
. (8)

It is easy to see that 〈S, ρ〉 is a dense linear order without end points and that A and B are its dense subsets 
(see [14], p. 434), which means that the L2-structure Y = 〈S, ρ, A, B〉 is a model of T2 and, since T2 is an 
ω-categorical theory, Y ∼= Q2.

For x, y ∈ S1, let x�y denote the set of elements of S belonging to the shorter arc determined by x and 
y and let a(x) denote the antipodal point of x.

Theorem 3.2. P (Q2) densely embeds in P (S(2)) and, hence, BS(2) ∼= BQ2 .
Each countable tournament equimorphic with S(2) has property P1.

Proof. Since Y := 〈S, ρ, A, B〉 ∼= Q2 we have P (Q2) ∼= P (Y ) and we show that P (Y ) is a dense subset of 
P (S(2)). First we prove that P (Y ) ⊂ P (S(2)). So, if D ∈ P (Y ), then there is an isomorphism

F : 〈S, ρ,A,B〉 →iso 〈D, ρ � D,A ∩D,B ∩D〉 (9)

and in order to prove that D ∈ P (S(2)) it remains to be shown that the mapping F : 〈S, →〉 → 〈D, →� D〉
is an isomorphism.

Now for x, y ∈ S we have: x → y iff (by (8)) 〈S, ρ, A, B〉 |= λ[x, y] iff (by (9)) 〈D, ρ � D, A ∩D, B ∩D〉 |=
λ[F (x), F (y)] iff (since λ is a Σ0-formula and, thus (D, S)-absolute) 〈S, ρ, A, B〉 |= λ[F (x), F (y)] iff (by (8)) 
F (x) → F (y). Thus F : 〈S, →〉 → 〈D, →� D〉 is an isomorphism, D ∈ P (S(2)) and we have proved that 
P (Y ) ⊂ P (S(2)).

Claim 3.3. If D ∈ P (S(2)), then 〈D, ρ � D〉 is a dense linear order with at most one end point and A1 :=
A ∩D and B1 := B ∩D are its dense subsets.

Proof. By Fact 1.3(b), D ∈ P (S(2)) implies that D := 〈D, →� D〉 is an elementary substructure of S(2). So, 
by the Tarski-Vaught theorem, in particular, for each formula θ(u, v, w) of the language Lb = 〈R〉, where R
is a binary relational symbol, we have:

∀x, y ∈ D
(
∃s ∈ S S(2) |= θ[x, y, s] ⇒ ∃z ∈ D D |= θ[x, y, z]

)
. (10)

Now 〈D, ρ � D〉 is a linear order and we prove that A1 is its dense subset, that is

∀x, y ∈ D
(
xρy ⇒ ∃z ∈ A1 xρzρy

)
. (11)

So, let x, y ∈ D and xρy. Then, since ρ is a strict linear order, ¬yρx.
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If x, y ∈ A1, then by (7) we have x → y. Since for s ∈ x�y we have x → s → y, by (10) there is z ∈ D

such that x → z → y. Now z ∈ B1 would imply that yρzρx and, hence, yρx, which is false. Thus z ∈ A1
and, by (7), xρzρy.

If x, y ∈ B1, then by (7) we have x → y. Since for s ∈ a(x)�a(y) we have y → s → x, by (10) there is 
z ∈ D such that y → z → x. z ∈ B1 would imply that yρzρx and, hence, yρx, which is false. Thus z ∈ A1
and, by (7), xρzρy.

If x ∈ A1 and y ∈ B1, then by (7) we have y → x. Since for s ∈ x�a(y) we have y → s and x → s, by 
(10) there is z ∈ D such that y → z and x → z. Assuming that z ∈ B1 we would have yρzρx and, hence, 
yρx, which is false. Thus z ∈ A1 and, by (7), xρzρy.

If x ∈ B1 and y ∈ A1, then by (7) we have y → x Since for s ∈ a(x)�y we have s → x and s → y, by 
(10) there is z ∈ D such that z → x and z → y. Assuming that z ∈ B1 we would have yρzρx, and, hence, 
yρx, which is false. Thus z ∈ A1 and, by (7), xρzρy.

So A1 is a dense subset of 〈D, ρ � D〉 and the proof for B1 is similar. This implies that 〈D, ρ � D〉 is a 
dense linear order.

Suppose that there are x = min〈D,ρ�D〉 D and y = max〈D,ρ�D〉 D. Then

∀z ∈ D \ {x, y} xρzρy. (12)

If x → y, then, since xρy, by (7) we have x, y ∈ A or x, y ∈ B; say x, y ∈ A. For s ∈ a(y)�x we have s → x

and s → y and, by (10), there is z ∈ D such that z → x and z → y. Now, by (12) we have xρz and zρy
and, since z → x and z → y, by (7) we obtain z ∈ B and z ∈ A, which is impossible. If x, y ∈ B we obtain 
a contradiction in the same way.

If y → x, then, since xρy, by (7) x and y are in different elements of the partition {A, B}; say x ∈ A and 
y ∈ B. For s ∈ y�x we have y → s → x and, by (10), there is z ∈ D such that y → z → x. By (12) and (7), 
from A � xρz and z → x it follows that z ∈ B and from zρy ∈ B and y → z it follows that z ∈ A and we 
have a contradiction. If y ∈ A and x ∈ B we obtain a contradiction in the same way. �

Now we prove that P (Y ) is a dense suborder of P (S(2)). If D ∈ P (S(2)), then, by Claim 3.3, 〈D, ρ � D〉
is a dense linear order and A1 := D ∩A and B1 := D ∩B are its dense subsets. Let D′ be the set obtained 
from D by deleting its end point, if it exists. Then 〈D′, ρ � D′〉 is a dense linear order without end points, 
A′

1 := D′∩A and B′
1 := D′∩B are its dense and disjoint subsets and, hence D′ := 〈D′, ρ � D′, A′

1, B
′
1〉 |= T2, 

which, since the theory T2 is ω-categorical, implies that D′ ∼= Y ; so D′ ∈ P (Y ) and, clearly, D′ ⊂ D. Thus 
P (Y ) is dense in P (S(2)) and, hence, P (S(2)) ≡forc P (Y ) ∼= P (Q2) so P (S(2)) ≡forc P (Q2).

The second statement follows from the first, Theorem 1.2(b) and (1). �
4. The digraphs S(3), T [In] and In[T ]

The digraph S(3) Again we consider the subset S =: {eqi : q ∈ Q} of the unit circle S1 in the complex 
plane. If r : S1 → S1 is the rotation given by r(eti) = e(t+ 2π

3 )i and x = eqi ∈ S, then r(x), r2(x) �∈ S, where 
r2(x) := r(r(x)), and the points x, r(x) and r2(x) are vertices of a equilateral triangle. If L = 〈R〉 is the 
language with one binary relational symbol, R, it is clear that the Lb-structure S(3) := 〈S, →〉, where → is 
the binary relation on S defined by

eq1i → eq2i ⇔ q2 − q1 ∈
⋃

k∈Z(2kπ, 2kπ + 2π
3 ), (13)

is a digraph; in fact we have x → y iff y ∈ x�r(x), where for non-antipodal points s, t ∈ S1 by s�t we denote 
the set of elements of S belonging to the shorter arc of S1 determined by s and t. The digraph S(3) is not 
a tournament; namely the Lb-formula θ(u, v) := u �= v ∧ ¬R(u, v) ∧ ¬R(v, u) defines the incomparability 
relation, ‖, in S(3): for x, y ∈ S,
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x ‖ y ⇔ x �= y ∧ ¬x → y ∧ ¬y → x

and we have x ‖ y iff y ∈ r(x)�r2(x). In addition, y → x iff y ∈ r2(x)�x; so, {ΔS , →, →−1, ‖} is a 
partition of the set S × S, where ΔS = {〈x, x〉 : x ∈ S} is the diagonal of S. S(3) is one of continuum may 
ultrahomogeneous digraphs [1].

For convenience, let L3 = 〈R, α, β, γ〉, where ar(α) = ar(β) = ar(γ) = 1. It is evident that {A, B, C} is a 
partition of the set S, where

A :=
{
eqi : q ∈

⋃
k∈Z(3π

6 + 2kπ, 7π
6 + 2kπ) ∩Q

}
,

B :=
{
eqi : q ∈

⋃
k∈Z(7π

6 + 2kπ, 11π
6 + 2kπ) ∩Q

}
,

C :=
{
eqi : q ∈

⋃
k∈Z(11π

6 + 2kπ, 15π
6 + 2kπ) ∩Q

}
,

and, clearly,

〈A,→� A〉 ∼= 〈B,→� B〉 ∼= 〈C,→� C〉 ∼= Q, (14)
(
(A× C) ∪ (C ×B) ∪ (B ×A)

)
∩ → = ∅ and (15)

(
(C ×A) ∪ (B × C) ∪ (A×B)

)
∩ →−1 = ∅. (16)

Now, 〈S, →, A, B, C〉 is an L3-structure, the L3-formula

λ(u, v) :=
[(

(α(u) ∧ α(v)) ∨ (β(u) ∧ β(v)) ∨ (γ(u) ∧ γ(v))
)
∧R(u, v)

]

∨
[(

(α(u) ∧ γ(v)) ∨ (γ(u) ∧ β(v)) ∨ (β(u) ∧ α(v))
)
∧R(v, u)

]

∨
[(

(γ(u) ∧ α(v)) ∨ (β(u) ∧ γ(v)) ∨ (α(u) ∧ β(v))
)
∧ θ(u, v)

]

defines a new binary relation τ on S

τ =
[(

(A×A) ∪ (B ×B) ∪ (C × C)
)

∩ →
]

∪
[(

(A× C) ∪ (C ×B) ∪ (B ×A)
)

∩ →−1
]

(17)

∪
[(

(C ×A) ∪ (B × C) ∪ (A×B)
)

∩ ‖
]

and 〈S, τ, A, B, C〉 is an L3-structure as well. By (17) we have

τ−1 =
[(

(A×A) ∪ (B ×B) ∪ (C × C)
)

∩ →−1
]

∪
[(

(C ×A) ∪ (B × C) ∪ (A×B)
)

∩ →
]

(18)

∪
[(

(A× C) ∪ (C ×B) ∪ (B ×A)
)

∩ ‖
]
.

For completeness we include a proof of the following well-known fact.

Fact 4.1. (a) 〈S, τ, A, B, C〉 ∼= Q3;
(b) 〈S, →, A, B, C〉 and 〈S, τ, A, B, C〉 are Σ0-bi-definable L3-structures.
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Proof. (a) Since →, →−1 and ‖ are irreflexive and pairwise disjoint binary relations on S, by (17) the 
relation τ is irreflexive and, by (17) and (18), τ ∩ τ−1 = ∅; so the relation τ is asymmetric; so 〈S, τ〉 is a 
digraph. In addition, by (14) - (18) we have τ ∪τ−1 = (S×S) \ΔS , which means that 〈S, τ〉 is a tournament.

Suppose that the relation τ is not transitive. Then xτyτzτx, for some x, y, z ∈ S, and, by (14), x, y and 
z are not in the same of the sets A, B and C.

Suppose that two of these points belong to one of these sets, say x, y ∈ A, which implies that x → y. If 
z ∈ B, then, by (17), y ‖ z and x → z and, hence y, z ∈ x�r(x), which implies that y �‖ z and we have a 
contradiction. If z ∈ C, then, by (17), z ‖ x and z → y and, hence x, z ∈ r2(y)�y, which implies that x �‖ z

and we have a contradiction. In a similar way we show that whenever two of the points belong to one of the 
elements of the partition we obtain a contradiction.

Thus x, y and z are in different elements of the partition and by (17) we have: if 〈x, y, z〉 ∈ (A × C ×
B) ∪ (B ×A ×C) ∪ (C ×B ×A), then x → z → y → x so {x, y, z} is a copy of the oriented triangle, C3, in 
S(3), which is impossible; if 〈x, y, z〉 ∈ (A × B × C) ∪ (B × C × A) ∪ (C × A × B), then x ‖ z ‖ y ‖ x and 
{x, y, z} is a copy of the empty digraph, E3, in S(3), which is impossible again.

A proof that A, B and C are dense sets in the linear order 〈S, τ〉 follows from the proof of Claim 4.3 (take 
D = S). Suppose that m = minS and, say m ∈ A; but by (17) and (14) we have 〈A, τ � A〉 = 〈A, →� A〉 ∼= Q

and this is impossible. So 〈S, τ〉 is a dense linear order without end points, 〈S, τ, A, B, C〉 |= T3 and, hence, 
〈S, τ, A, B, C〉 ∼= Q3.

(b) First, τ = {〈x, y〉 ∈ S × S : 〈S, →, A, B, C〉 |= λ[x, y]} and we show that → = {〈x, y〉 ∈ S × S :
〈S, τ, A, B, C〉 |= μ[x, y]}, where μ(u, v) is the L3-formula

μ(u, v) :=
[(

(α(u) ∧ α(v)) ∨ (β(u) ∧ β(v)) ∨ (γ(u) ∧ γ(v))
)
∧ R(u, v)

]

∨
[(

(γ(u) ∧ α(v)) ∨ (β(u) ∧ γ(v)) ∨ (α(u) ∧ β(v))
)
∧ ¬R(u, v)

]
,

that is, defining U := A2∪B2∪C2, V := (C×A) ∪ (B×C) ∪ (A ×B) and W := (A ×C) ∪ (C×B) ∪ (B×A)
we prove that

→= (U ∩ τ) ∪ (V \ τ). (19)

By (15) we have →= (U∩ →) ∪ (V ∩ →) and, by (17), U ∩ τ = U∩ →. By (17) and (16) we have 
V \ τ = V \ ‖= V ∩ (→ ∪ →−1) = V ∩ → so (19) is true. Since the formulas λ and μ are quantifier free, 
statement (b) is proved. �
Theorem 4.2. P (Q3) densely embeds in P (S(3)) and, hence, BS(3) ∼= BQ3 .

Each countable digraph equimorphic with S(3) has property P1.

Proof. Let Y := 〈S, τ, A, B, C〉. By Fact 4.1(a) we have P (Q3) ∼= P (Y ) so it is sufficient to show that 
P (Y ) is a dense subset of P (S(3)). We prove first that P (Y ) ⊂ P (S(3)). So, if D ∈ P (Y ), then there is an 
isomorphism

F : 〈S, τ, A,B,C〉 →iso 〈D, τ � D,A ∩D,B ∩D,C ∩D〉 (20)

and in order to prove that D ∈ P (S(3)) it remains to be shown that the mapping F : 〈S, →〉 → 〈D, →� D〉
is an isomorphism. By Fact 4.1(b), the relation → is defined by the L3-formula μ in the structure Y , that is

∀x, y ∈ S
(
x → y ⇔ 〈S, τ, A,B,C〉 |= μ[x, y]

)
. (21)
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Now for x, y ∈ S we have: x → y iff (by (21)) 〈S, τ, A, B, C〉 |= μ[x, y] iff (by (20)) 〈D, τ � D, A ∩D, B∩D, C∩
D〉 |= μ[F (x), F (y)] iff (since μ is a Σ0-formula and, thus, (D, S)-absolute) 〈S, τ, A, B, C〉 |= μ[F (x), F (y)] iff 
(by (21)) F (x) → F (y). Thus F : 〈S, →〉 → 〈D, →� D〉 is an isomorphism, D ∈ P (S(3)) and P (Y ) ⊂ P (S(3))
indeed.

Claim 4.3. If D ∈ P (S(3)), then 〈D, τ � D〉 is a dense linear order and the sets A1 := A ∩D, B1 := B ∩D

and C1 := C ∩D are dense in 〈D, τ � D〉.

Proof. By Fact 1.3(b), if D ∈ P (S(3)), then D := 〈D, →� D〉 ≺ S(3). So, by the Tarski-Vaught theorem, 
for each Lb-formula θ(u, v, w) we have:

∀x, y ∈ D
(
∃s ∈ S S(3) |= θ[x, y, s] ⇒ ∃z ∈ D D |= θ[x, y, z]

)
. (22)

By Fact 4.1(a) 〈D, τ � D〉 is a linear order and we prove that A1 is its dense subset. So, assuming that 
x, y ∈ D and xτy we will find a z ∈ A1 such that xτzτy.

If x, y ∈ A1, then by (17) we have x → y. Since for s ∈ x�y we have x → s → y, by (22), there is z ∈ D

such that x → z → y. Since x, y ∈ A, by (15) we have z �∈ B ∪C, which implies that z ∈ A1. Thus, by (17)
we have xτzτy.

If x, y ∈ B1, then by (17) we have x → y. Since for s ∈ r2(x)�r2(y) we have s → x and y ‖ s, by (22)
there is z ∈ D such that z → x and y ‖ z. Since x ∈ B, by (15) we have z �∈ C, and assuming that z ∈ B we 
would have y �‖ z (because 〈B, →� B〉 is a linear order). Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (B×A)∩ →−1⊂ τ

and 〈z, y〉 ∈ (A ×B)∩ ‖⊂ τ . So we have xτzτy.
If x, y ∈ C1, then by (17) we have x → y. Since for s ∈ r(x)�r(y) we have x ‖ s and y → s, by (22) there 

is z ∈ D such that x ‖ z and y → z. Since y ∈ C, by (15) we have z �∈ B, and assuming that z ∈ C we 
would have x �‖ z (because 〈C, →� C〉 is a linear order). Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (C × A)∩ ‖⊂ τ

and 〈z, y〉 ∈ (A × C)∩ →−1⊂ τ . So we have xτzτy.
If x ∈ A1, y ∈ B1, then by (17) we have x ‖ y. Since for s ∈ x�r2(y) we have x → s and s ‖ y, by (22)

there is z ∈ D such that x → z and z ‖ y. Since x ∈ A, by (15) we have z �∈ C, and assuming that z ∈ B we 
would have z �‖ y (because 〈B, →� B〉 is a linear order). Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (A ×A)∩ →⊂ τ

and 〈z, y〉 ∈ (A ×B)∩ ‖⊂ τ . So we have xτzτy.
If x ∈ A1, y ∈ C1, then by (17) we have y → x. Since for s ∈ x�r(y) we have x → s and y → s, by (22)

there is z ∈ D such that x → z and y → z. Since x ∈ A, by (15) we have z �∈ C; since y ∈ C, by (15) we 
have z �∈ B, Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (A ×A)∩ →⊂ τ and 〈z, y〉 ∈ (A ×C)∩ →−1⊂ τ . So, xτzτy.

If x ∈ B1, y ∈ C1, then by (17) we have x ‖ y. Since for s ∈ r2(x)�r(y) we have s → x and y → s, by 
(22) there is z ∈ D such that z → x and y → z. Since x ∈ B, by (15) we have z �∈ C; since y ∈ C, by (15)
we have z �∈ B, Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (B × A)∩ →−1⊂ τ and 〈z, y〉 ∈ (A × C)∩ →−1⊂ τ . 
Thus, xτzτy.

If x ∈ B1, y ∈ A1, then by (17) we have y → x. Since for s ∈ r2(x)�y we have s → x and s → y, by (22)
there is z ∈ D such that z → x and z → y. Since x ∈ B, by (15) we have z �∈ C, and since y ∈ A, by (15) we 
have z �∈ B. Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (B×A)∩ →−1⊂ τ and 〈z, y〉 ∈ (A ×A)∩ →⊂ τ . So, xτzτy.

If x ∈ C1, y ∈ A1, then by (17) we have x ‖ y. Since for s ∈ r(x)�y we have x ‖ s and s → y, by (22)
there is z ∈ D such that x ‖ z and z → y. Since y ∈ A, by (15) we have z �∈ B; and assuming that z ∈ C we 
would have x �‖ z (because 〈C, →� C〉 is a linear order). Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (C × A)∩ ‖⊂ τ

and 〈z, y〉 ∈ (A ×A)∩ →⊂ τ . So we have xτzτy.
If x ∈ C1, y ∈ B1, then by (17) we have y → x. Since for s ∈ r(x)�r2(y) we have x ‖ s and y ‖ s, by (22)

there is z ∈ D such that x ‖ z and y ‖ z. Since 〈C, →� C〉 and 〈B, →� B〉 are linear orders, assuming that 
z ∈ C (resp. z ∈ B) we would have x �‖ z (resp. y �‖ z). Thus z ∈ A1 and, by (17), 〈x, z〉 ∈ (C × A)∩ ‖⊂ τ

and 〈z, y〉 ∈ (A ×B)∩ ‖⊂ τ . So we have xτzτy.
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Proofs that B1 and C1 are dense sets in the linear order 〈D, τ〉 are similar. �
Now, if D ∈ P (S(3)), then, by Claim 4.3, 〈D, τ � D〉 is a dense linear order and A ∩D, B ∩D and C ∩D

are dense sets in 〈D, τ〉. Let D′ be the set obtained from D by deleting its end points, if they exist. Then 
〈D′, τ � D′〉 is a dense linear order without end points and {A ∩D′, B ∩D′, C ∩D′} is a partition of D′ into 
three dense subsets of 〈D′, τ � D′〉. Thus D′ := 〈D′, τ � D′, A ∩D′, B∩D′, C∩D′〉 is a substructure of Y and 
D′ |= T3, which, since the theory T3 is ω-categorical and, by Fact 4.1(a), Y |= T3, implies that D′ ∼= Y . So 
D′ ∈ P (Y ), D′ ⊂ D and P (Y ) is a dense suborder of P (S(3)) indeed. Thus P (S(3)) ≡forc P (Y ) ∼= P (Q3)
and, hence, P (S(3)) ≡forc P (Q3).

The second statement follows from the first, Theorem 1.2(b) and (1). �
Wreath products T [In] and In[T ]. One subclass of the class of all ultrahomogeneous digraphs (Cherlin’s 
list [1]) is described as follows. Let T be an ultrahomogeneous tournament (thus T ∈ {Q, T∞, S(2)}) and, 
for an integer n ≥ 2, let In denote the digraph with n vertices and with no arrows. Then the digraphs

- T [In] (obtained by replacement of each point of T by a copy of In) and
- In[T ] (obtained by replacement of each point of In by a copy of T )

are ultrahomogeneous, the Lb-formula ϕ(u, v) := ¬R(u, v) ∧ ¬R(v, u) defines the “unrelatedness” binary 
relation ∼ on the domain and, hence, all automorphisms preserve ∼.

It is easy to see that all embeddings of T [In] =
⋃

t∈T Itn preserve the relation ∼ as well and hence, 
P (T [In]) = {

⋃
t∈A Itn : A ∈ P (T )} ∼= P (T ). So, the digraphs Q[In] and S(2)[In] have property P1 while 

T∞[In] has P2.
On the other hand, the digraphs In[T ] are disconnected and, by Theorem 5.2 of [7], P (In[T ]) ∼= P (T )n. 

Thus, for example, the poset P (In[S(2)]) ≡forc (S ∗ π)n.
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