DC FieldValueLanguage
dc.contributor.authorIvković, Stefanen_US
dc.date.accessioned2023-11-22T10:17:58Z-
dc.date.available2023-11-22T10:17:58Z-
dc.date.issued2023-
dc.identifier.isbn979-12-218-0964-0-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5206-
dc.description.abstractIn this paper we prove that the set of semi-C∗-Weyl operators on self-dual Hilbert W ∗-modules forms a semigroup under the multiplication. Next, we introduce a new concept of generalized Fredholm operators on an infinite dimensional Hilbert space and we show that the set of these operators is invariant under finite rank perturbations, as well as some other results generalizing their classical counterparts. Moreover, we consider closed range C∗-operators and obtain some of their properties. Finally, we provide concrete examples of semi-C∗-Weyl operators.en_US
dc.publisheraracneen_US
dc.subjectSemi-Fredholm operator | semi-Weyl operator | generalized Fredholm operator | Hilbert C∗-moduleen_US
dc.titleSome extensions of the semi-C*-Fredholm theoryen_US
dc.typeConference Paperen_US
dc.relation.conferenceConference on Topological Algebras and Their Applications (ICTAA) 2022en_US
dc.identifier.urlhttps://www.gtgconference.eu/ictaa2022.html-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage63-
dc.relation.lastpage86-
dc.description.rankM33-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2248-8206-
Show simple item record

Page view(s)

36
checked on May 9, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.