Authors: | Stević, Stevo | Title: | An equivalent norm on BMO spaces | Journal: | Acta Sci. Math. (Szeged) | Volume: | 66 | Issue: | 3-4 | First page: | 553 | Last page: | 564 | Issue Date: | 2000 | ISSN: | 0001-6969 | URL: | http://pub.acta.hu/acta/showCustomerArticle.action?id=2251&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=221c3410a4bce45d&style= | Abstract: | Let p0. A Borel function f, locally integrable in the unit ball B, is said to be a BMOp(B) function if fBMOp=supB(ar)B1V(B(ar))B(ar)f(x)−fB(ar)pdV(x)1p+ where the supremum is taken over all balls B(ar) in B, and fB(ar) is the mean value of f over B(ar) . Let (B) denote the set of harmonic functions in open unit ball B, far(x) denotes f(a+rx) for arbitrary function f. The main result of this paper is to prove the following theorem: Let u(B), p1. Then a) upBMOp=supaB0r1−ap(p−1)2n(n−2)Buar(x)−uar(0)p−2uar(x)2(2x2−n+(n−2)x2−n)dVN(x) for n3, and b) upBMOp=supaB0r1−ap(p−1)Buar(x)−uar(0)p−2uar(x)2ln1x−1+xdVN(x)for n=2. |
Publisher: | Birkhäuser Verlag |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.