DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en_US |
dc.date.accessioned | 2023-10-18T08:43:08Z | - |
dc.date.available | 2023-10-18T08:43:08Z | - |
dc.date.issued | 2000 | - |
dc.identifier.issn | 0001-6969 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5191 | - |
dc.description.abstract | Let p0. A Borel function f, locally integrable in the unit ball B, is said to be a BMOp(B) function if fBMOp=supB(ar)B1V(B(ar))B(ar)f(x)−fB(ar)pdV(x)1p+ where the supremum is taken over all balls B(ar) in B, and fB(ar) is the mean value of f over B(ar) . Let (B) denote the set of harmonic functions in open unit ball B, far(x) denotes f(a+rx) for arbitrary function f. The main result of this paper is to prove the following theorem: Let u(B), p1. Then a) upBMOp=supaB0r1−ap(p−1)2n(n−2)Buar(x)−uar(0)p−2uar(x)2(2x2−n+(n−2)x2−n)dVN(x) for n3, and b) upBMOp=supaB0r1−ap(p−1)Buar(x)−uar(0)p−2uar(x)2ln1x−1+xdVN(x)for n=2. | en_US |
dc.publisher | Birkhäuser Verlag | en_US |
dc.relation.ispartof | Acta Sci. Math. (Szeged) | en_US |
dc.title | An equivalent norm on BMO spaces | en_US |
dc.type | Article | en_US |
dc.identifier.url | http://pub.acta.hu/acta/showCustomerArticle.action?id=2251&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=221c3410a4bce45d&style= | - |
dc.relation.firstpage | 553 | - |
dc.relation.lastpage | 564 | - |
dc.relation.issue | 3-4 | - |
dc.relation.volume | 66 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.