DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2023-10-18T08:43:08Z-
dc.date.available2023-10-18T08:43:08Z-
dc.date.issued2000-
dc.identifier.issn0001-6969-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5191-
dc.description.abstractLet p0. A Borel function f, locally integrable in the unit ball B, is said to be a BMOp(B) function if fBMOp=supB(ar)B1V(B(ar))B(ar)f(x)−fB(ar)pdV(x)1p+ where the supremum is taken over all balls B(ar) in B, and fB(ar) is the mean value of f over B(ar) . Let (B) denote the set of harmonic functions in open unit ball B, far(x) denotes f(a+rx) for arbitrary function f. The main result of this paper is to prove the following theorem: Let u(B), p1. Then a) upBMOp=supaB0r1−ap(p−1)2n(n−2)Buar(x)−uar(0)p−2uar(x)2(2x2−n+(n−2)x2−n)dVN(x) for n3, and b) upBMOp=supaB0r1−ap(p−1)Buar(x)−uar(0)p−2uar(x)2ln1x−1+xdVN(x)for n=2.en_US
dc.publisherBirkhäuser Verlagen_US
dc.relation.ispartofActa Sci. Math. (Szeged)en_US
dc.titleAn equivalent norm on BMO spacesen_US
dc.typeArticleen_US
dc.identifier.urlhttp://pub.acta.hu/acta/showCustomerArticle.action?id=2251&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=221c3410a4bce45d&style=-
dc.relation.firstpage553-
dc.relation.lastpage564-
dc.relation.issue3-4-
dc.relation.volume66-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.