Authors: Stević, Stevo 
Title: An equivalent norm on BMO spaces
Journal: Acta Sci. Math. (Szeged)
Volume: 66
Issue: 3-4
First page: 553
Last page: 564
Issue Date: 2000
ISSN: 0001-6969
URL: http://pub.acta.hu/acta/showCustomerArticle.action?id=2251&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=221c3410a4bce45d&style=
Abstract: 
Let p0. A Borel function f, locally integrable in the unit ball B, is said to be a BMOp(B) function if
fBMOp=supB(ar)B1V(B(ar))B(ar)f(x)−fB(ar)pdV(x)1p+
where the supremum is taken over all balls B(ar) in B, and fB(ar) is the mean value of f over B(ar) . Let (B) denote the set of harmonic functions in open unit ball B, far(x) denotes f(a+rx) for arbitrary function f. The main result of this paper is to prove the following theorem: Let u(B), p1. Then a)
upBMOp=supaB0r1−ap(p−1)2n(n−2)Buar(x)−uar(0)p−2uar(x)2(2x2−n+(n−2)x2−n)dVN(x)
for n3, and b)
upBMOp=supaB0r1−ap(p−1)Buar(x)−uar(0)p−2uar(x)2ln1x−1+xdVN(x)for n=2.
Publisher: Birkhäuser Verlag

Show full item record

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.