Authors: Blagojević, Pavle 
Loperena, Jaime Calles
Crabb, Michael C.
Dimitrijević-Blagojević, Aleksandra 
Affiliations: Mathematics 
Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: TOPOLOGY OF THE GRÜNBAUM–HADWIGER–RAMOS PROBLEM FOR MASS ASSIGNMENTS
Journal: Topological Methods in Nonlinear Analysis
Volume: 61
Issue: 1
First page: 107
Last page: 133
Issue Date: 2023
Rank: ~M22
ISSN: 1230-3429
DOI: 10.12775/TMNA.2022.041
Abstract: 
In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum–Hadwiger–Ramos mass partition problem to mass assignments. Using the Fadell–Husseini index theory we prove that for a given (family of j mass assignments µ1, …, µj on the Grassmann manifold GℓRd) and (a given integer k ≥ 1 there exist a linear subspace L ∈ GℓRd) and k affine hyperplanes in L that equipart the masses µL1, …, µLj assigned to the subspace L, provided that d ≥ j + (2k−1 − 1)2⌊log 2j⌋.
Keywords: existence of equivariant maps | Fadell–Husseini ideal valued index | Mass partitions
Publisher: Juliusz Schauder Center for Nonlinear Analysis

Show full item record

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.