DC Field | Value | Language |
---|---|---|
dc.contributor.author | Blagojević, Pavle | en_US |
dc.contributor.author | Loperena, Jaime Calles | en_US |
dc.contributor.author | Crabb, Michael C. | en_US |
dc.contributor.author | Dimitrijević-Blagojević, Aleksandra | en_US |
dc.date.accessioned | 2023-06-08T11:43:46Z | - |
dc.date.available | 2023-06-08T11:43:46Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1230-3429 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5058 | - |
dc.description.abstract | In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum–Hadwiger–Ramos mass partition problem to mass assignments. Using the Fadell–Husseini index theory we prove that for a given (family of j mass assignments µ1, …, µj on the Grassmann manifold GℓRd) and (a given integer k ≥ 1 there exist a linear subspace L ∈ GℓRd) and k affine hyperplanes in L that equipart the masses µL1, …, µLj assigned to the subspace L, provided that d ≥ j + (2k−1 − 1)2⌊log 2j⌋. | en_US |
dc.publisher | Juliusz Schauder Center for Nonlinear Analysis | en_US |
dc.relation.ispartof | Topological Methods in Nonlinear Analysis | en_US |
dc.subject | existence of equivariant maps | Fadell–Husseini ideal valued index | Mass partitions | en_US |
dc.title | TOPOLOGY OF THE GRÜNBAUM–HADWIGER–RAMOS PROBLEM FOR MASS ASSIGNMENTS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.12775/TMNA.2022.041 | - |
dc.identifier.scopus | 2-s2.0-85159862644 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 107 | - |
dc.relation.lastpage | 133 | - |
dc.relation.issue | 1 | - |
dc.relation.volume | 61 | - |
dc.description.rank | ~M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-3649-9897 | - |
SCOPUSTM
Citations
1
checked on Apr 1, 2025
Page view(s)
22
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.