DC Field | Value | Language |
---|---|---|
dc.contributor.author | Blagojević, Pavle | en_US |
dc.contributor.author | Loperena, Jaime Calles | en_US |
dc.contributor.author | Crabb, Michael C. | en_US |
dc.contributor.author | Dimitrijević-Blagojević, Aleksandra | en_US |
dc.date.accessioned | 2023-06-08T11:43:46Z | - |
dc.date.available | 2023-06-08T11:43:46Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1230-3429 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5058 | - |
dc.description.abstract | In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum–Hadwiger–Ramos mass partition problem to mass assignments. Using the Fadell–Husseini index theory we prove that for a given (family of j mass assignments µ1, …, µj on the Grassmann manifold GℓRd) and (a given integer k ≥ 1 there exist a linear subspace L ∈ GℓRd) and k affine hyperplanes in L that equipart the masses µL1, …, µLj assigned to the subspace L, provided that d ≥ j + (2k−1 − 1)2⌊log 2j⌋. | en_US |
dc.publisher | Juliusz Schauder Center for Nonlinear Analysis | en_US |
dc.relation.ispartof | Topological Methods in Nonlinear Analysis | en_US |
dc.subject | existence of equivariant maps | Fadell–Husseini ideal valued index | Mass partitions | en_US |
dc.title | TOPOLOGY OF THE GRÜNBAUM–HADWIGER–RAMOS PROBLEM FOR MASS ASSIGNMENTS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.12775/TMNA.2022.041 | - |
dc.identifier.scopus | 2-s2.0-85159862644 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 107 | - |
dc.relation.lastpage | 133 | - |
dc.relation.issue | 1 | - |
dc.relation.volume | 61 | - |
dc.description.rank | ~M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-3649-9897 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.