DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorLoperena, Jaime Callesen_US
dc.contributor.authorCrabb, Michael C.en_US
dc.contributor.authorDimitrijević-Blagojević, Aleksandraen_US
dc.date.accessioned2023-06-08T11:43:46Z-
dc.date.available2023-06-08T11:43:46Z-
dc.date.issued2023-
dc.identifier.issn1230-3429-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5058-
dc.description.abstractIn this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the classical Grünbaum–Hadwiger–Ramos mass partition problem to mass assignments. Using the Fadell–Husseini index theory we prove that for a given (family of j mass assignments µ1, …, µj on the Grassmann manifold GℓRd) and (a given integer k ≥ 1 there exist a linear subspace L ∈ GℓRd) and k affine hyperplanes in L that equipart the masses µL1, …, µLj assigned to the subspace L, provided that d ≥ j + (2k−1 − 1)2⌊log 2j⌋.en_US
dc.publisherJuliusz Schauder Center for Nonlinear Analysisen_US
dc.relation.ispartofTopological Methods in Nonlinear Analysisen_US
dc.subjectexistence of equivariant maps | Fadell–Husseini ideal valued index | Mass partitionsen_US
dc.titleTOPOLOGY OF THE GRÜNBAUM–HADWIGER–RAMOS PROBLEM FOR MASS ASSIGNMENTSen_US
dc.typeArticleen_US
dc.identifier.doi10.12775/TMNA.2022.041-
dc.identifier.scopus2-s2.0-85159862644-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage107-
dc.relation.lastpage133-
dc.relation.issue1-
dc.relation.volume61-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.