Authors: Baudier, Florent P.
Braga, Bruno M.
Farah, Ilijas 
Khukhro, Ana
Vignati, Alessandro
Willett, Rufus
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Uniform Roe algebras of uniformly locally finite metric spaces are rigid
Journal: Inventiones Mathematicae
Volume: 230
First page: 1071
Last page: 1100
Issue Date: 2022
Rank: ~M21a
ISSN: 0020-9910
DOI: 10.1007/s00222-022-01140-x
Abstract: 
We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, Cu∗(X) and Cu∗(Y), are isomorphic as C ∗-algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between Cu∗(X) and Cu∗(Y). As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ∞(Γ) ⋊ rΓ and ℓ∞(Λ) ⋊ rΛ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.
Publisher: Springer Link

Files in This Item:
File Description SizeFormat
s00222-022-01140-x.pdf410.3 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

10
checked on Jan 10, 2026

Page view(s)

98
checked on Jan 10, 2026

Download(s)

39
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons