DC FieldValueLanguage
dc.contributor.authorBaudier, Florent P.en_US
dc.contributor.authorBraga, Bruno M.en_US
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorKhukhro, Anaen_US
dc.contributor.authorVignati, Alessandroen_US
dc.contributor.authorWillett, Rufusen_US
dc.date.accessioned2022-12-26T10:31:30Z-
dc.date.available2022-12-26T10:31:30Z-
dc.date.issued2022-
dc.identifier.issn0020-9910-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4999-
dc.description.abstractWe show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, Cu∗(X) and Cu∗(Y), are isomorphic as C ∗-algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between Cu∗(X) and Cu∗(Y). As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ∞(Γ) ⋊ rΓ and ℓ∞(Λ) ⋊ rΛ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofInventiones Mathematicaeen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleUniform Roe algebras of uniformly locally finite metric spaces are rigiden_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00222-022-01140-x-
dc.identifier.scopus2-s2.0-85141121430-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage1071-
dc.relation.lastpage1100-
dc.relation.volume230-
dc.description.rank~M21a-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7703-6931-
Files in This Item:
File Description SizeFormat
s00222-022-01140-x.pdf410.3 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

10
checked on Jan 10, 2026

Page view(s)

98
checked on Jan 10, 2026

Download(s)

39
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons