DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baudier, Florent P. | en_US |
dc.contributor.author | Braga, Bruno M. | en_US |
dc.contributor.author | Farah, Ilijas | en_US |
dc.contributor.author | Khukhro, Ana | en_US |
dc.contributor.author | Vignati, Alessandro | en_US |
dc.contributor.author | Willett, Rufus | en_US |
dc.date.accessioned | 2022-12-26T10:31:30Z | - |
dc.date.available | 2022-12-26T10:31:30Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0020-9910 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4999 | - |
dc.description.abstract | We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, Cu∗(X) and Cu∗(Y), are isomorphic as C ∗-algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between Cu∗(X) and Cu∗(Y). As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ∞(Γ) ⋊ rΓ and ℓ∞(Λ) ⋊ rΛ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent. | en_US |
dc.publisher | Springer Link | en_US |
dc.relation.ispartof | Inventiones Mathematicae | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Uniform Roe algebras of uniformly locally finite metric spaces are rigid | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00222-022-01140-x | - |
dc.identifier.scopus | 2-s2.0-85141121430 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 1071 | - |
dc.relation.lastpage | 1100 | - |
dc.relation.volume | 230 | - |
dc.description.rank | ~M21a | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-7703-6931 | - |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s00222-022-01140-x.pdf | 410.3 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
5
checked on Apr 2, 2025
Page view(s)
27
checked on Jan 31, 2025
Download(s)
14
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License