Authors: Loveys, James
Tanović, Predrag 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Countable models of trivial theories which admit finite coding
Journal: Journal of Symbolic Logic
Volume: 61
Issue: 4
First page: 1279
Last page: 1286
Issue Date: 1-Jan-1996
ISSN: 0022-4812
DOI: 10.2307/2275816
Abstract: 
We prove: THEOREM. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 N0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding.
Publisher: Cambridge University Press

Show full item record

SCOPUSTM   
Citations

3
checked on Nov 19, 2024

Page view(s)

13
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.