| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Loveys, James | en |
| dc.contributor.author | Tanović, Predrag | en |
| dc.date.accessioned | 2020-05-19T09:43:40Z | - |
| dc.date.available | 2020-05-19T09:43:40Z | - |
| dc.date.issued | 1996-01-01 | en |
| dc.identifier.issn | 0022-4812 | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2770 | - |
| dc.description.abstract | We prove: THEOREM. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 N0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding. | en |
| dc.publisher | Cambridge University Press | - |
| dc.relation.ispartof | Journal of Symbolic Logic | en |
| dc.title | Countable models of trivial theories which admit finite coding | en |
| dc.type | Article | en |
| dc.identifier.doi | 10.2307/2275816 | en |
| dc.identifier.scopus | 2-s2.0-0030300456 | en |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 1279 | en |
| dc.relation.lastpage | 1286 | en |
| dc.relation.issue | 4 | en |
| dc.relation.volume | 61 | en |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | Mathematics | - |
| crisitem.author.orcid | 0000-0003-0307-7508 | - |
SCOPUSTM
Citations
3
checked on Nov 24, 2025
Page view(s)
35
checked on Nov 26, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.