DC Field | Value | Language |
---|---|---|
dc.contributor.author | Loveys, James | en |
dc.contributor.author | Tanović, Predrag | en |
dc.date.accessioned | 2020-05-19T09:43:40Z | - |
dc.date.available | 2020-05-19T09:43:40Z | - |
dc.date.issued | 1996-01-01 | en |
dc.identifier.issn | 0022-4812 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2770 | - |
dc.description.abstract | We prove: THEOREM. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 N0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding. | en |
dc.publisher | Cambridge University Press | - |
dc.relation.ispartof | Journal of Symbolic Logic | en |
dc.title | Countable models of trivial theories which admit finite coding | en |
dc.type | Article | en |
dc.identifier.doi | 10.2307/2275816 | en |
dc.identifier.scopus | 2-s2.0-0030300456 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 1279 | en |
dc.relation.lastpage | 1286 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 61 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | Mathematics | - |
crisitem.author.orcid | 0000-0003-0307-7508 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.