DC FieldValueLanguage
dc.contributor.authorLoveys, Jamesen
dc.contributor.authorTanović, Predragen
dc.date.accessioned2020-05-19T09:43:40Z-
dc.date.available2020-05-19T09:43:40Z-
dc.date.issued1996-01-01en
dc.identifier.issn0022-4812en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2770-
dc.description.abstractWe prove: THEOREM. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 N0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding.en
dc.publisherCambridge University Press-
dc.relation.ispartofJournal of Symbolic Logicen
dc.titleCountable models of trivial theories which admit finite codingen
dc.typeArticleen
dc.identifier.doi10.2307/2275816en
dc.identifier.scopus2-s2.0-0030300456en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1279en
dc.relation.lastpage1286en
dc.relation.issue4en
dc.relation.volume61en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.deptMathematics-
crisitem.author.orcid0000-0003-0307-7508-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 24, 2025

Page view(s)

35
checked on Nov 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.