DC FieldValueLanguage
dc.contributor.authorLoveys, Jamesen
dc.contributor.authorTanović, Predragen
dc.date.accessioned2020-05-19T09:43:40Z-
dc.date.available2020-05-19T09:43:40Z-
dc.date.issued1996-01-01en
dc.identifier.issn0022-4812en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2770-
dc.description.abstractWe prove: THEOREM. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 N0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding.en
dc.publisherCambridge University Press-
dc.relation.ispartofJournal of Symbolic Logicen
dc.titleCountable models of trivial theories which admit finite codingen
dc.typeArticleen
dc.identifier.doi10.2307/2275816en
dc.identifier.scopus2-s2.0-0030300456en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1279en
dc.relation.lastpage1286en
dc.relation.issue4en
dc.relation.volume61en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptMathematics-
crisitem.author.orcid0000-0003-0307-7508-
Show simple item record

SCOPUSTM   
Citations

3
checked on Apr 4, 2025

Page view(s)

16
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.