Authors: | Gorsky, Eugene Gukov, Sergei Stošić, Marko |
Title: | Quadruply-graded colored homology of knots | Journal: | Fundamenta Mathematicae | Volume: | 243 | Issue: | 3 | First page: | 301 | Last page: | 311 | Issue Date: | 1-Jan-2018 | Rank: | M22 | ISSN: | 0016-2736 | DOI: | 10.4064/fm30-11-2017 | Abstract: | We conjecture the existence of four independent gradings in colored HOMFLYPT homology, and make qualitative predictions of various interesting structures and symmetries in the colored homology of arbitrary knots. We propose an explicit conjectural description for the rectangular colored homology of torus knots, and identify the new gradings in this context. While some of these structures have a natural interpretation in the physical realization of knot homologies based on counting supersymmetric configurations (BPS states, instantons, and vortices), others are completely new. They suggest new geometric and physical realizations of colored HOMFLYPT homology as the Hochschild homology of the category of branes in a Landau-Ginzburg B-model or, equivalently, in the mirror A-model. Supergroups and supermanifolds are surprisingly ubiquitous in all aspects of this work. |
Keywords: | BPS invariants | Colored HOMFLYPT invariants | Differentials | Knot homology | Lie superalgebras | Publisher: | Instytut Matematyczny Polskiej Akademii Nauk | Project: | German Science Foundation, Research Training Group 2229 |
Show full item record
SCOPUSTM
Citations
15
checked on Dec 26, 2024
Page view(s)
21
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.