Authors: | Avilés, Antonio Poveda, Alejandro Todorčević, Stevo |
Title: | Rosenthal compacta that are premetric of finite degree | Journal: | Fundamenta Mathematicae | Volume: | 239 | Issue: | 3 | First page: | 259 | Last page: | 278 | Issue Date: | 1-Jan-2017 | Rank: | M22 | ISSN: | 0016-2736 | DOI: | 10.4064/fm333-12-2016 | Abstract: | We show that if a separable Rosenthal compactum K is a continuous n-To-one preimage of a metric compactum, but it is not a continuous n-1-To-one preimage, then K contains a closed subset homeomorphic to either the n-split interval Sn(I) or the Alexandroff n-plicate Dn(2N). This generalizes a result of the third author that corresponds to the case n = 2. |
Keywords: | Alexandroff duplicate | Compact space of the first baire class | Double arrow space | Multidimensional version | Rosenthal compact space | Split interval | Publisher: | Instytut Matematyczny Polskiej Akademii Nauk | Project: | FEDER (No. MTM2014-54182-P) Fundación Séneca - Región de Murcia (No. 19275/PI/14) MECD (Spanish Government) (No. FPU15/00026) Generalitat de Catalunya (No. SGR 437-2014) NSERC (No. 455916) CNRS (No. IMJ-PRG UMR7586) |
Show full item record
SCOPUSTM
Citations
1
checked on Dec 26, 2024
Page view(s)
20
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.