Authors: | Atanacković, Teodor Pilipović, Stevan Zorica, Dušan |
Title: | Time distributed-order diffusion-wave equation. I. Volterra-type equation | Journal: | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | Volume: | 465 | Issue: | 2106 | First page: | 1869 | Last page: | 1891 | Issue Date: | 8-Jun-2009 | Rank: | M21 | ISSN: | 1364-5021 | DOI: | 10.1098/rspa.2008.0445 | Abstract: | A single-order time-fractional diffusion-wave equation is generalized by introducing a time distributed-order fractional derivative and forcing term, while a Laplacian is replaced by a general linear multi-dimensional spatial differential operator. The obtained equation is (in the case of the Laplacian) called a time distributed-order diffusion-wave equation. We analyse a Cauchy problem for such an equation by means of the theory of an abstract Volterra equation. The weight distribution, occurring in the distributedorder fractional derivative, is specified as the sum of the Dirac distributions and the existence and uniqueness of solutions to the Cauchy problem, and the corresponding Volterra-type equation were proven for a general linear spatial differential operator, as well as in the special case when the operator is Laplacian. |
Keywords: | Diffusion-wave equation | Distributed-order fractional derivative | Fractional derivative | Volterra equation | Publisher: | The Royal Society | Project: | Serbian Ministry of Sciences, Grants 144019A and 144016 |
Show full item record
SCOPUSTM
Citations
89
checked on Dec 26, 2024
Page view(s)
24
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.