DC FieldValueLanguage
dc.contributor.authorAtanacković, Teodoren
dc.contributor.authorPilipović, Stevanen
dc.contributor.authorZorica, Dušanen
dc.date.accessioned2020-05-01T20:14:06Z-
dc.date.available2020-05-01T20:14:06Z-
dc.date.issued2009-06-08en
dc.identifier.issn1364-5021en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1900-
dc.description.abstractA single-order time-fractional diffusion-wave equation is generalized by introducing a time distributed-order fractional derivative and forcing term, while a Laplacian is replaced by a general linear multi-dimensional spatial differential operator. The obtained equation is (in the case of the Laplacian) called a time distributed-order diffusion-wave equation. We analyse a Cauchy problem for such an equation by means of the theory of an abstract Volterra equation. The weight distribution, occurring in the distributedorder fractional derivative, is specified as the sum of the Dirac distributions and the existence and uniqueness of solutions to the Cauchy problem, and the corresponding Volterra-type equation were proven for a general linear spatial differential operator, as well as in the special case when the operator is Laplacian.en
dc.publisherThe Royal Society-
dc.relationSerbian Ministry of Sciences, Grants 144019A and 144016-
dc.relation.ispartofProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectDiffusion-wave equation | Distributed-order fractional derivative | Fractional derivative | Volterra equationen
dc.titleTime distributed-order diffusion-wave equation. I. Volterra-type equationen
dc.typeArticleen
dc.identifier.doi10.1098/rspa.2008.0445en
dc.identifier.scopus2-s2.0-67149103784en
dc.relation.firstpage1869en
dc.relation.lastpage1891en
dc.relation.issue2106en
dc.relation.volume465en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-9117-8589-
Show simple item record

SCOPUSTM   
Citations

89
checked on Dec 26, 2024

Page view(s)

24
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.