Authors: | Chang, Der Chen Stević, Stevo |
Title: | The generalized cesàro operator on the unit polydisk | Journal: | Taiwanese Journal of Mathematics | Volume: | 7 | Issue: | 2 | First page: | 293 | Last page: | 308 | Issue Date: | 1-Jan-2003 | Rank: | M23 | ISSN: | 1027-5487 | DOI: | 10.11650/twjm/1500575066 | Abstract: | Let Dn = {(z1,..., zn) ∈ C n : |zj| < 1, j = 1, ..., n} be the unit polydisk in Cn. The aim of this paper is to prove the boundedness of the generalized Cesàro operators Cγ→ on H p(Dn) (Hardy) and Aμ→p,q(Dn) (the generalized Bergman) spaces, for 0 < p, q < ∞ and γ→ = (γ1,...,γn) with Re (γj) > 1, j = 1,...,n. Here μ→ = (μ1,...,μn) and each μj is a positive Borel measure on the interval [0,1). Also we present a class of invariant spaces under the action of this operator. |
Keywords: | Analytic functions | Bergman spaces | Cesàro operator | Hardy spaces | Invariant spaces | Polydisk | Publisher: | Mathematical Society of the Republic of China |
Show full item record
SCOPUSTM
Citations
35
checked on Nov 19, 2024
Page view(s)
10
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.