Authors: Chang, Der Chen
Stević, Stevo 
Title: The generalized cesàro operator on the unit polydisk
Journal: Taiwanese Journal of Mathematics
Volume: 7
Issue: 2
First page: 293
Last page: 308
Issue Date: 1-Jan-2003
Rank: M23
ISSN: 1027-5487
DOI: 10.11650/twjm/1500575066
Abstract: 
Let Dn = {(z1,..., zn) ∈ C n : |zj| < 1, j = 1, ..., n} be the unit polydisk in Cn. The aim of this paper is to prove the boundedness of the generalized Cesàro operators Cγ→ on H p(Dn) (Hardy) and Aμ→p,q(Dn) (the generalized Bergman) spaces, for 0 < p, q < ∞ and γ→ = (γ1,...,γn) with Re (γj) > 1, j = 1,...,n. Here μ→ = (μ1,...,μn) and each μj is a positive Borel measure on the interval [0,1). Also we present a class of invariant spaces under the action of this operator.
Keywords: Analytic functions | Bergman spaces | Cesàro operator | Hardy spaces | Invariant spaces | Polydisk
Publisher: Mathematical Society of the Republic of China

Show full item record

SCOPUSTM   
Citations

35
checked on Nov 19, 2024

Page view(s)

10
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.