DC FieldValueLanguage
dc.contributor.authorChang, Der Chenen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:49Z-
dc.date.available2020-05-01T20:13:49Z-
dc.date.issued2003-01-01en
dc.identifier.issn1027-5487en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1725-
dc.description.abstractLet Dn = {(z1,..., zn) ∈ C n : |zj| < 1, j = 1, ..., n} be the unit polydisk in Cn. The aim of this paper is to prove the boundedness of the generalized Cesàro operators Cγ→ on H p(Dn) (Hardy) and Aμ→p,q(Dn) (the generalized Bergman) spaces, for 0 < p, q < ∞ and γ→ = (γ1,...,γn) with Re (γj) > 1, j = 1,...,n. Here μ→ = (μ1,...,μn) and each μj is a positive Borel measure on the interval [0,1). Also we present a class of invariant spaces under the action of this operator.en
dc.publisherMathematical Society of the Republic of China-
dc.relation.ispartofTaiwanese Journal of Mathematicsen
dc.subjectAnalytic functions | Bergman spaces | Cesàro operator | Hardy spaces | Invariant spaces | Polydisken
dc.titleThe generalized cesàro operator on the unit polydisken
dc.typeArticleen
dc.identifier.doi10.11650/twjm/1500575066en
dc.identifier.scopus2-s2.0-0012454192en
dc.relation.firstpage293en
dc.relation.lastpage308en
dc.relation.issue2en
dc.relation.volume7en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

35
checked on Apr 2, 2025

Page view(s)

10
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.