Authors: | Stević, Stevo | Title: | A Littlewood-Paley type inequality | Journal: | Bulletin of the Brazilian Mathematical Society | Volume: | 34 | Issue: | 2 | First page: | 211 | Last page: | 217 | Issue Date: | 1-Jul-2003 | Rank: | M23 | ISSN: | 1678-7544 | DOI: | 10.1007/s00574-003-0008-1 | Abstract: | In this note we prove the following theorem: Let u be a harmonic function in the unit ball B ⊂ Rn and p ∈ [n-2/n-1, 1]. Then there is a constant C = C(p,n) such that sup0≤r≤1∫ s|u(rζ)|pdσ(ζ) ≤ C (|u(0)|p + ∫B|∇u(x)|p(1 - |x|)p-1dV(x). |
Keywords: | Hardy space | Harmonic functions | Littlewood-Paley inequality | Maximal function | Unit ball | Publisher: | Springer Link |
Show full item record
SCOPUSTM
Citations
6
checked on Apr 18, 2025
Page view(s)
22
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.