| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Stević, Stevo | en |
| dc.date.accessioned | 2020-05-01T20:13:48Z | - |
| dc.date.available | 2020-05-01T20:13:48Z | - |
| dc.date.issued | 2003-07-01 | en |
| dc.identifier.issn | 1678-7544 | en |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1714 | - |
| dc.description.abstract | In this note we prove the following theorem: Let u be a harmonic function in the unit ball B ⊂ Rn and p ∈ [n-2/n-1, 1]. Then there is a constant C = C(p,n) such that sup0≤r≤1∫ s|u(rζ)|pdσ(ζ) ≤ C (|u(0)|p + ∫B|∇u(x)|p(1 - |x|)p-1dV(x). | en |
| dc.publisher | Springer Link | - |
| dc.relation.ispartof | Bulletin of the Brazilian Mathematical Society | en |
| dc.subject | Hardy space | Harmonic functions | Littlewood-Paley inequality | Maximal function | Unit ball | en |
| dc.title | A Littlewood-Paley type inequality | en |
| dc.type | Article | en |
| dc.identifier.doi | 10.1007/s00574-003-0008-1 | en |
| dc.identifier.scopus | 2-s2.0-0141460841 | en |
| dc.relation.firstpage | 211 | en |
| dc.relation.lastpage | 217 | en |
| dc.relation.issue | 2 | en |
| dc.relation.volume | 34 | en |
| dc.description.rank | M23 | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
6
checked on Nov 26, 2025
Page view(s)
52
checked on Nov 25, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.