DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:48Z-
dc.date.available2020-05-01T20:13:48Z-
dc.date.issued2003-07-01en
dc.identifier.issn1678-7544en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1714-
dc.description.abstractIn this note we prove the following theorem: Let u be a harmonic function in the unit ball B ⊂ Rn and p ∈ [n-2/n-1, 1]. Then there is a constant C = C(p,n) such that sup0≤r≤1∫ s|u(rζ)|pdσ(ζ) ≤ C (|u(0)|p + ∫B|∇u(x)|p(1 - |x|)p-1dV(x).en
dc.publisherSpringer Link-
dc.relation.ispartofBulletin of the Brazilian Mathematical Societyen
dc.subjectHardy space | Harmonic functions | Littlewood-Paley inequality | Maximal function | Unit ballen
dc.titleA Littlewood-Paley type inequalityen
dc.typeArticleen
dc.identifier.doi10.1007/s00574-003-0008-1en
dc.identifier.scopus2-s2.0-0141460841en
dc.relation.firstpage211en
dc.relation.lastpage217en
dc.relation.issue2en
dc.relation.volume34en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.