Authors: Chang, Der Chen
Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Addendum to the paper "a note on weighted Bergman spaces and the Cesàro operator"
Journal: Nagoya Mathematical Journal
Volume: 180
First page: 77
Last page: 90
Issue Date: 1-Dec-2005
Rank: M21
ISSN: 0027-7630
DOI: 10.1017/S0027763000009193
Let H(Dn) be the space of holomorphic functions on the unit polydisk Dn, and let script L signαp,q(Dn), where p,q > 0, α = (α1. .., αnwith αj > -1, j = 1,...,n, be the class of all measurable functions f defined on Dn such that ∫(0,1)nMpq(f, r) Πj=1n (1-rj)αj drj < ∞ where Mp(f,r) denote the p-integral means of the function f. Denote the weighted Bergman space on Dn by Aαp,q(Dn) = Lαp,q(D n)∩H(Dn). We provide a characterization for a function f being in Aαp,q(Dn). Using the characterization we prove the following result: Let p > 1, then the Cesàro operator is bounded on the space Aαp,p(Dn).
Publisher: Cambridge University Press
Project: U.S.Department of Defense, Grant DAAH-0496-10301

Show full item record


checked on May 23, 2024

Page view(s)

checked on May 9, 2024

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.