DC FieldValueLanguage
dc.contributor.authorChang, Der Chenen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:46Z-
dc.date.available2020-05-01T20:13:46Z-
dc.date.issued2005-12-01en
dc.identifier.issn0027-7630en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1687-
dc.description.abstractLet H(Dn) be the space of holomorphic functions on the unit polydisk Dn, and let script L signαp,q(Dn), where p,q > 0, α = (α1. .., αnwith αj > -1, j = 1,...,n, be the class of all measurable functions f defined on Dn such that ∫(0,1)nMpq(f, r) Πj=1n (1-rj)αj drj < ∞ where Mp(f,r) denote the p-integral means of the function f. Denote the weighted Bergman space on Dn by Aαp,q(Dn) = Lαp,q(D n)∩H(Dn). We provide a characterization for a function f being in Aαp,q(Dn). Using the characterization we prove the following result: Let p > 1, then the Cesàro operator is bounded on the space Aαp,p(Dn).en
dc.publisherCambridge University Press-
dc.relationU.S.Department of Defense, Grant DAAH-0496-10301-
dc.relation.ispartofNagoya Mathematical Journalen
dc.titleAddendum to the paper "a note on weighted Bergman spaces and the Cesàro operator"en
dc.typeArticleen
dc.identifier.doi10.1017/S0027763000009193-
dc.identifier.scopus2-s2.0-31544458681en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage77en
dc.relation.lastpage90en
dc.relation.volume180en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 19, 2024

Page view(s)

15
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.