Authors: Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Boundedness and compactness of an integral operator on a weighted space on the polydisc
Journal: Indian Journal of Pure and Applied Mathematics
Volume: 37
Issue: 6
First page: 343
Last page: 355
Issue Date: 1-Dec-2006
Rank: M23
ISSN: 0019-5588
Abstract: 
We study operators of the form Tg(f)(z)= ∫0z1 ⋯ ∫0zn f(ζ1,..., ζn)g(ζ1,...ζn) ∏i=1n dζj where g is a fixed holomorphic function on the unit polydisc Un, on the space S α→(Un) defined by S α→(Un) = {f ∈ H(Un)|sup z∈Un|f(z)|∏j=1n(1-|z j|)αj < ∞}, where α = (α1, ⋯, αn), αj > 0, j = 1, ⋯, n. It is shown that the operator Tg is bounded on Sα→(Un) if and only if supz∈Un ∏j=1n(1 - |zj|)|g(z)| < ∞, and compact if and only if lim z→∂Un ∏j=1n(1 - |zj|)|g(z)| = 0. Also, we give a necessary and sufficient condition for a holomorphic function on the polydisc to be a p-Bloch function, when p ∈ [1, 2).
Keywords: Boundedness | Compactness | Holomorphic function | Integral operator | p-Bloch space | Polydisc
Publisher: Indian National Science Academy

Show full item record

SCOPUSTM   
Citations

70
checked on Dec 26, 2024

Page view(s)

24
checked on Dec 26, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.