DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:44Z-
dc.date.available2020-05-01T20:13:44Z-
dc.date.issued2006-12-01en
dc.identifier.issn0019-5588en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1670-
dc.description.abstractWe study operators of the form Tg(f)(z)= ∫0z1 ⋯ ∫0zn f(ζ1,..., ζn)g(ζ1,...ζn) ∏i=1n dζj where g is a fixed holomorphic function on the unit polydisc Un, on the space S α→(Un) defined by S α→(Un) = {f ∈ H(Un)|sup z∈Un|f(z)|∏j=1n(1-|z j|)αj < ∞}, where α = (α1, ⋯, αn), αj > 0, j = 1, ⋯, n. It is shown that the operator Tg is bounded on Sα→(Un) if and only if supz∈Un ∏j=1n(1 - |zj|)|g(z)| < ∞, and compact if and only if lim z→∂Un ∏j=1n(1 - |zj|)|g(z)| = 0. Also, we give a necessary and sufficient condition for a holomorphic function on the polydisc to be a p-Bloch function, when p ∈ [1, 2).en
dc.publisherIndian National Science Academy-
dc.relation.ispartofIndian Journal of Pure and Applied Mathematicsen
dc.subjectBoundedness | Compactness | Holomorphic function | Integral operator | p-Bloch space | Polydiscen
dc.titleBoundedness and compactness of an integral operator on a weighted space on the polydiscen
dc.typeArticleen
dc.identifier.scopus2-s2.0-34247492076en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage343en
dc.relation.lastpage355en
dc.relation.issue6en
dc.relation.volume37en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

70
checked on Nov 24, 2024

Page view(s)

23
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.