Authors: Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Existence of nontrivial solutions of a rational difference equation
Journal: Applied Mathematics Letters
Volume: 20
Issue: 1
First page: 28
Last page: 31
Issue Date: 1-Jan-2007
Rank: M22
ISSN: 0893-9659
DOI: 10.1016/j.aml.2006.03.002
Abstract: 
We prove that the Putnam difference equation x n + 1 = frac(x n + x n - 1 + x n - 2 x n - 3 , x n x n - 1 + x n - 2 + x n - 3 ), n = 0, 1, ... has a positive solution which is not eventually equal to 1. This provides positive confirmation of a conjecture due to G. Ladas [Open problems and conjectures, J. Difference Equ. Appl. 4 (1998) 497-499].
Keywords: Equilibrium point | Global asymptotic stability | Positive solution | Putnam difference equation
Publisher: Elsevier

Show full item record

SCOPUSTM   
Citations

98
checked on Nov 24, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.