DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:43Z-
dc.date.available2020-05-01T20:13:43Z-
dc.date.issued2007-01-01en
dc.identifier.issn0893-9659en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1665-
dc.description.abstractWe prove that the Putnam difference equation x n + 1 = frac(x n + x n - 1 + x n - 2 x n - 3 , x n x n - 1 + x n - 2 + x n - 3 ), n = 0, 1, ... has a positive solution which is not eventually equal to 1. This provides positive confirmation of a conjecture due to G. Ladas [Open problems and conjectures, J. Difference Equ. Appl. 4 (1998) 497-499].en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectEquilibrium point | Global asymptotic stability | Positive solution | Putnam difference equationen
dc.titleExistence of nontrivial solutions of a rational difference equationen
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2006.03.002en
dc.identifier.scopus2-s2.0-33749989766en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage28en
dc.relation.lastpage31en
dc.relation.issue1en
dc.relation.volume20en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

98
checked on Nov 24, 2024

Page view(s)

13
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.