Authors: Berenhaut, Kenneth
John, Dfoley
Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: The global attractivity of the rational difference equation yn = A + (yn-k/ yn-m)p
Journal: Proceedings of the American Mathematical Society
Volume: 136
Issue: 1
First page: 103
Last page: 110
Issue Date: 1-Jan-2008
Rank: M22
ISSN: 0002-9939
DOI: 10.1090/S0002-9939-07-08860-0
Abstract: 
This paper studies the behavior of positive solutions of the recursive equation yn = A + (yn-k /yn-m) p, n= 0, 1, 2, . . ., with y-s, y-s+1, . . .,y-1 ε (0,∞) and k,m ε {1, 2, 3, 4, . . .}, where s = max{k,m}. We prove that if gcd(k,m) = 1, and p ≤ min{1, (A + 1)/2}, then yn tends to A + 1. This complements several results in the recent literature, including the main result in K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation yn = 1+ yn-k/ y n-m, Proc. Amer. Math. Soc., 135 (2007) 1133-1140.
Publisher: American Mathematical Society

Show full item record

SCOPUSTM   
Citations

16
checked on Nov 24, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.