DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berenhaut, Kenneth | en |
dc.contributor.author | John, Dfoley | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:40Z | - |
dc.date.available | 2020-05-01T20:13:40Z | - |
dc.date.issued | 2008-01-01 | en |
dc.identifier.issn | 0002-9939 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1632 | - |
dc.description.abstract | This paper studies the behavior of positive solutions of the recursive equation yn = A + (yn-k /yn-m) p, n= 0, 1, 2, . . ., with y-s, y-s+1, . . .,y-1 ε (0,∞) and k,m ε {1, 2, 3, 4, . . .}, where s = max{k,m}. We prove that if gcd(k,m) = 1, and p ≤ min{1, (A + 1)/2}, then yn tends to A + 1. This complements several results in the recent literature, including the main result in K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation yn = 1+ yn-k/ y n-m, Proc. Amer. Math. Soc., 135 (2007) 1133-1140. | en |
dc.publisher | American Mathematical Society | - |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.title | The global attractivity of the rational difference equation yn = A + (yn-k/ yn-m)p | en |
dc.type | Article | en |
dc.identifier.doi | 10.1090/S0002-9939-07-08860-0 | en |
dc.identifier.scopus | 2-s2.0-67349187658 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 103 | en |
dc.relation.lastpage | 110 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 136 | en |
dc.description.rank | M22 | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
16
checked on Dec 12, 2024
Page view(s)
14
checked on Dec 12, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.