DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorJohn, Dfoleyen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:40Z-
dc.date.available2020-05-01T20:13:40Z-
dc.date.issued2008-01-01en
dc.identifier.issn0002-9939en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1632-
dc.description.abstractThis paper studies the behavior of positive solutions of the recursive equation yn = A + (yn-k /yn-m) p, n= 0, 1, 2, . . ., with y-s, y-s+1, . . .,y-1 ε (0,∞) and k,m ε {1, 2, 3, 4, . . .}, where s = max{k,m}. We prove that if gcd(k,m) = 1, and p ≤ min{1, (A + 1)/2}, then yn tends to A + 1. This complements several results in the recent literature, including the main result in K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation yn = 1+ yn-k/ y n-m, Proc. Amer. Math. Soc., 135 (2007) 1133-1140.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.titleThe global attractivity of the rational difference equation yn = A + (yn-k/ yn-m)pen
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9939-07-08860-0en
dc.identifier.scopus2-s2.0-67349187658en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage103en
dc.relation.lastpage110en
dc.relation.issue1en
dc.relation.volume136en
dc.description.rankM22-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

16
checked on Dec 12, 2024

Page view(s)

14
checked on Dec 12, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.