Authors: Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: On the recursive sequence xn + 1 = max {c, frac(xnp, xn - 1p)}
Journal: Applied Mathematics Letters
Volume: 21
Issue: 8
First page: 791
Last page: 796
Issue Date: 1-Aug-2008
Rank: M22
ISSN: 0893-9659
DOI: 10.1016/j.aml.2007.08.008
Abstract: 
This work studies the boundedness and global attractivity for the positive solutions of the difference equation xn + 1 = max {c, frac(underover(x, n, p), underover(x, n - 1, p))}, n ∈ N0, with p, c ∈ (0, ∞). It is shown that: (a) there exist unbounded solutions whenever p ≥ 4, (b) all positive solutions are bounded when p ∈ (0, 4), (c) every positive solution is eventually equal to 1 when p ∈ (0, 4) and c ≥ 1, (d) all positive solutions converge to 1 whenever p, c ∈ (0, 1).
Keywords: Boundedness | Difference equation | Global attractivity | Max type difference equations
Publisher: Elsevier

Show full item record

SCOPUSTM   
Citations

105
checked on Nov 23, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.