DC FieldValueLanguage
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:38Z-
dc.date.available2020-05-01T20:13:38Z-
dc.date.issued2008-08-01en
dc.identifier.issn0893-9659en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1616-
dc.description.abstractThis work studies the boundedness and global attractivity for the positive solutions of the difference equation xn + 1 = max {c, frac(underover(x, n, p), underover(x, n - 1, p))}, n ∈ N0, with p, c ∈ (0, ∞). It is shown that: (a) there exist unbounded solutions whenever p ≥ 4, (b) all positive solutions are bounded when p ∈ (0, 4), (c) every positive solution is eventually equal to 1 when p ∈ (0, 4) and c ≥ 1, (d) all positive solutions converge to 1 whenever p, c ∈ (0, 1).en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectBoundedness | Difference equation | Global attractivity | Max type difference equationsen
dc.titleOn the recursive sequence xn + 1 = max {c, frac(xnp, xn - 1p)}en
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2007.08.008en
dc.identifier.scopus2-s2.0-45249106152en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage791en
dc.relation.lastpage796en
dc.relation.issue8en
dc.relation.volume21en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

105
checked on Nov 23, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.