Authors: Brzdęk, Janusz
Stević, Stevo 
Title: Behaviour at infinity of solutions of some linear functional equations in normed spaces
Journal: Aequationes Mathematicae
Volume: 87
Issue: 3
First page: 379
Last page: 389
Issue Date: 1-Jan-2014
Rank: M21
ISSN: 0001-9054
DOI: 10.1007/s00010-013-0194-x
Abstract: 
Let K ∈ {ℝ, ℂ}, I = (d, ∞), φ: I → I be unbounded continuous and increasing, X be a normed space over K, F: = {f ∈ X I : lim t → ∞ f(t) exists in X}, â ∈ K, A(â): = {α ∈ K I : lim t → ∞ α(t) = â}, and X: = {x ∈ X I : limsup t → ∞ {double pipe}x(t){double pipe} < ∞}. We prove that the limit lim t → ∞ x(t) exists for every f ∈ F, α ∈ A(â) and every solution x ∈ X of the functional equation x(φ(t)) = α(t)x(t) + f(t) if and only if {pipe}â{pipe} ≠ 1. Using this result we study behaviour of bounded at infinity solutions of the functional equation (Formual Presented) under some conditions posed on functions α j (t), j = 0, 1,..., k - 1, φ and f.
Keywords: bounded solution | existence of a limit | Linear functional equation | strictly increasing function
Publisher: Springer Link

Show full item record

Page view(s)

12
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.