DC FieldValueLanguage
dc.contributor.authorBrzdęk, Januszen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:19Z-
dc.date.available2020-05-01T20:13:19Z-
dc.date.issued2014-01-01en
dc.identifier.issn0001-9054en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1423-
dc.description.abstractLet K ∈ {ℝ, ℂ}, I = (d, ∞), φ: I → I be unbounded continuous and increasing, X be a normed space over K, F: = {f ∈ X I : lim t → ∞ f(t) exists in X}, â ∈ K, A(â): = {α ∈ K I : lim t → ∞ α(t) = â}, and X: = {x ∈ X I : limsup t → ∞ {double pipe}x(t){double pipe} < ∞}. We prove that the limit lim t → ∞ x(t) exists for every f ∈ F, α ∈ A(â) and every solution x ∈ X of the functional equation x(φ(t)) = α(t)x(t) + f(t) if and only if {pipe}â{pipe} ≠ 1. Using this result we study behaviour of bounded at infinity solutions of the functional equation (Formual Presented) under some conditions posed on functions α j (t), j = 0, 1,..., k - 1, φ and f.en
dc.publisherSpringer Link-
dc.relation.ispartofAequationes Mathematicaeen
dc.subjectbounded solution | existence of a limit | Linear functional equation | strictly increasing functionen
dc.titleBehaviour at infinity of solutions of some linear functional equations in normed spacesen
dc.typeArticleen
dc.identifier.doi10.1007/s00010-013-0194-xen
dc.identifier.scopus2-s2.0-84902013012en
dc.relation.firstpage379en
dc.relation.lastpage389en
dc.relation.issue3en
dc.relation.volume87en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

15
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.