DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brzdęk, Janusz | en |
dc.contributor.author | Stević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:13:19Z | - |
dc.date.available | 2020-05-01T20:13:19Z | - |
dc.date.issued | 2014-01-01 | en |
dc.identifier.issn | 0001-9054 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1423 | - |
dc.description.abstract | Let K ∈ {ℝ, ℂ}, I = (d, ∞), φ: I → I be unbounded continuous and increasing, X be a normed space over K, F: = {f ∈ X I : lim t → ∞ f(t) exists in X}, â ∈ K, A(â): = {α ∈ K I : lim t → ∞ α(t) = â}, and X: = {x ∈ X I : limsup t → ∞ {double pipe}x(t){double pipe} < ∞}. We prove that the limit lim t → ∞ x(t) exists for every f ∈ F, α ∈ A(â) and every solution x ∈ X of the functional equation x(φ(t)) = α(t)x(t) + f(t) if and only if {pipe}â{pipe} ≠ 1. Using this result we study behaviour of bounded at infinity solutions of the functional equation (Formual Presented) under some conditions posed on functions α j (t), j = 0, 1,..., k - 1, φ and f. | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Aequationes Mathematicae | en |
dc.subject | bounded solution | existence of a limit | Linear functional equation | strictly increasing function | en |
dc.title | Behaviour at infinity of solutions of some linear functional equations in normed spaces | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00010-013-0194-x | en |
dc.identifier.scopus | 2-s2.0-84902013012 | en |
dc.relation.firstpage | 379 | en |
dc.relation.lastpage | 389 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 87 | en |
dc.description.rank | M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.