Author(s) | Title | Issue Date | Appears in | Rank |
Stević, Stevo ; Berenhaut, Kenneth | The behavior of positive solutions of a nonlinear second-order difference equation | 1-Apr-2008 | Abstract and Applied Analysis; 2008 | M22 |
Berenhaut, Kenneth; Stević, Stevo | The behaviour of the positive solutions of the difference equation x n = A + (xn-2/xn-1)p | 1-Sep-2006 | Journal of Difference Equations and Applications; 12(9); 909-918 | M21 |
Berenhaut, Kenneth; Foley, John; Stević, Stevo | Boundedness character of positive solutions of a higher order difference equation | 1-Jun-2010 | International Journal of Computer Mathematics; 87(7); 1431-1435 | M23 |
Berenhaut, Kenneth; Foley, John; Stević, Stevo | Boundedness character of positive solutions of a max difference equation | 1-Dec-2006 | Journal of Difference Equations and Applications; 12(12); 1193-1199 | M21 |
Berenhaut, Kenneth; Stević, Stevo | The difference equation xn + 1 = α + frac(xn - k, ∑i = 0k - 1 ci xn - i) has solutions converging to zero | 15-Feb-2007 | Journal of Mathematical Analysis and Applications; 326(2); 1466-1471 | M21 |
Berenhaut, Kenneth; Goedhart, Eva; Stević, Stevo | Explicit bounds for third-order difference equations | 1-Jan-2006 | ANZIAM Journal / Australian and New Zealand Industrial and Applied Mathematics; 47(3); 359-366 | |
Berenhaut, Kenneth; Stević, Stevo | The global attractivity of a higher order rational difference equation | 15-Feb-2007 | Journal of Mathematical Analysis and Applications; 326(2); 940-944 | M21 |
Berenhaut, Kenneth; Foley, John; Stević, Stevo | The global attractivity of the rational difference equation yn = 1+ yn-k/yn-m | 1-Apr-2007 | Proceedings of the American Mathematical Society; 135(4); 1133-1140 | M22 |
Berenhaut, Kenneth; John, Dfoley; Stević, Stevo | The global attractivity of the rational difference equation yn = A + (yn-k/ yn-m)p | 1-Jan-2008 | Proceedings of the American Mathematical Society; 136(1); 103-110 | M22 |
Berenhaut, Kenneth; Foley, John; Stević, Stevo | The global attractivity of the rational difference equation yn = frac(yn - k + yn - m, 1 + yn - k yn - m) | 1-Jan-2007 | Applied Mathematics Letters; 20(1); 54-58 | M22 |
Berenhaut, Kenneth; Stević, Stevo | A note on positive non-oscillatory solutions of the difference equation xn+1 = α + xn-kp/xn p | 1-May-2006 | Journal of Difference Equations and Applications; 12(5); 495-499 | M21 |
Berenhaut, Kenneth; Stević, Stevo | A note on the difference equation | 1-Jan-2005 | Journal of Difference Equations and Applications; 11(14); 1225-1228 | M22 |
Berenhaut, Kenneth; Dice, Jennifer; Foley, John; Iričanin, Bratislav; Stević, Stevo | Periodic solutions of the rational difference equation yn = yn-3+yn-4/yn-1 | 1-Jan-2006 | Journal of Difference Equations and Applications; 12(2); 183-189 | M21 |
Berenhaut, Kenneth; Foley, John; Stević, Stevo | Quantitative bounds for the recursive sequence yn + 1 = A + frac(yn, yn - k) | 1-Sep-2006 | Applied Mathematics Letters; 19(9); 983-989 | M23 |