Authors: Li, Songxiao
Stević, Stevo 
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Integral-type operators from Bloch-type spaces to Zygmund-type spaces
Journal: Applied Mathematics and Computation
Volume: 215
Issue: 2
First page: 464
Last page: 473
Issue Date: 15-Sep-2009
Rank: M21
ISSN: 0096-3003
DOI: 10.1016/j.amc.2009.05.011
Abstract: 
Let H (B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. This paper investigates the following integral-type operator with symbol g ∈ H (B)Tg (f) (z) = ∫01 f (tz) R g (tz) frac(dt, t), f ∈ H (B), z ∈ B,where R g (z) = ∑j = 1n zj frac(∂ g, ∂ zj) (z) is the radial derivative of g. The boundedness and compactness of the operator Tg from Bloch-type spaces to Zygmund-type spaces are studied.
Keywords: Bloch-type space | Boundedness | Compactness | Integral-type operators | Zygmund-type space
Publisher: Elsevier
Project: Educational Commission of Guangdong Province, China (No. LYM08092)

Show full item record

SCOPUSTM   
Citations

56
checked on Nov 27, 2022

Page view(s)

11
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.