Authors: | Stević, Stevo |

Affiliations: | Mathematical Institute of the Serbian Academy of Sciences and Arts |

Title: | Global stability of some symmetric difference equations |

Journal: | Applied Mathematics and Computation |

Volume: | 216 |

Issue: | 1 |

First page: | 179 |

Last page: | 186 |

Issue Date: | 1-Mar-2010 |

Rank: | M21 |

ISSN: | 0096-3003 |

DOI: | 10.1016/j.amc.2010.01.029 |

Abstract: | Suppose r ∈ (0, 1], m ∈ N and 1 ≤ k1 < k2 < ⋯ < k2 m + 1, and let S2 m + 1 = {1, 2, ..., 2 m + 1}. We show that every positive solution to the difference equationyn = frac(P2 m + 12 m + 1 (yn - k1r, yn - k2r, ..., yn - k2 m + 1r), P2 m2 m + 1 (yn - k1r, yn - k2r, ..., yn - k2 m + 1r)), n ∈ N0,whereP2 m + 12 m + 1 (x1, x2, ..., x2 m + 1) = underover(∑, frac(r = 1, r odd), 2 m + 1) under(∑, frac({t1, t2, ..., tr} ⊆ S2 m + 1, t1 < t2 < ⋯ < tr)) xt1 xt2 ⋯ xtrandP2 m2 m + 1 (x1, x2, ..., x2 m + 1) = 1 + underover(∑, frac(r = 2, r even), 2 m) under(∑, frac({t1, t2, ..., tr} ⊂ S2 m + 1, t1 < t2 < ⋯ < tr)) xt1 xt2 ⋯ xtr,converges to one. This result confirms a quite recent conjecture posed by Liu and Yang (2010) in [10]. We also prove another result regarding a related equation. |

Keywords: | Positive solution | Rational difference equation | Stability | Symmetry |

Publisher: | Elsevier |

Show full item record

#### SCOPUS^{TM}

Citations

17
checked on Jul 16, 2023

#### Page view(s)

16
checked on Aug 4, 2023

#### Google Scholar^{TM}

Check
#### Altmetric

#### Altmetric

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.