DC FieldValueLanguage
dc.contributor.authorStojković, Ivanen
dc.contributor.authorJelisavčić, Vladisaven
dc.contributor.authorMilutinović, Veljkoen
dc.contributor.authorObradović, Zoranen
dc.date.accessioned2020-05-01T20:12:31Z-
dc.date.available2020-05-01T20:12:31Z-
dc.date.issued2017-01-01en
dc.identifier.isbn978-0-999-24110-3en
dc.identifier.issn1045-0823en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/988-
dc.description.abstractLearning the sparse Gaussian Markov Random Field, or conversely, estimating the sparse inverse covariance matrix is an approach to uncover the underlying dependency structure in data. Most of the current methods solve the problem by optimizing the maximum likelihood objective with a Laplace prior L1 on entries of a precision matrix. We propose a novel objective with a regularization term which penalizes an approximate product of the Cholesky decomposed precision matrix. This new reparametrization of the penalty term allows efficient coordinate descent optimization, which in synergy with an active set approach results in a very fast and efficient method for learning the sparse inverse covariance matrix. We evaluated the speed and solution quality of the newly proposed SCHL method on problems consisting of up to 24,840 variables. Our approach was several times faster than three state-of-the-art approaches. We also demonstrate that SCHL can be used to discover interpretable networks, by applying it to a high impact problem from the health informatics domain.en
dc.publisherInternational Joint Conferences on Artificial Intelligence-
dc.relationDARPA, Grants FA9550-12-1-0406 and 66001-11-1-4183-
dc.relationAFOSR, DARPA and the ARO, Grant No. W911NF-16-C-0050-
dc.relationNSF BIG-DATA, Grant 14476570-
dc.relationONR, Grant N00014-15-1-2729-
dc.relation.ispartofIJCAI International Joint Conference on Artificial Intelligenceen
dc.titleFast sparse Gaussian Markov Random fields learning based on Cholesky factorizationen
dc.typeConference Paperen
dc.relation.conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017; Melbourne; Australia; 19 August 2017 through 25 August 2017-
dc.identifier.doi10.24963/ijcai.2017/384-
dc.identifier.scopus2-s2.0-85031929925en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2758en
dc.relation.lastpage2764en
dc.description.rankM30-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0009-0007-0593-8275-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 18, 2024

Page view(s)

19
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.