DC Field | Value | Language |
---|---|---|
dc.contributor.author | Janković, Slobodanka | en |
dc.contributor.author | Ostrogorski, Tatjana | en |
dc.date.accessioned | 2020-04-27T10:55:26Z | - |
dc.date.available | 2020-04-27T10:55:26Z | - |
dc.date.issued | 2003-01-01 | en |
dc.identifier.issn | 1065-2469 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/980 | - |
dc.description.abstract | We find conditions which imply that the difference of two slowly varying functions is slowly varying. Given an additively slowly varying increasing convex function l, we consider the class K l of increasing functions F such that F/l is increasing convex. If an additively slowly varying function L belongs to K l , we find conditions under which, if we decompose L into a sum L = F + G, where F, G ∈ K l , then it follows that F and G are necessarily slowly varying. As an auxiliary result, we find some properties of additively slowly varying functions with remainder term which are also of independent interest. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | Integral Transforms and Special Functions | en |
dc.subject | Additively slowly varying functions | Remainder term | en |
dc.title | Decomposition of convex additively slowly varying functions | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/1065246031000081058 | en |
dc.identifier.scopus | 2-s2.0-30244570106 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 301 | en |
dc.relation.lastpage | 306 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 14 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.