DC Field | Value | Language |
---|---|---|
dc.contributor.author | Janković, Slobodanka | en |
dc.contributor.author | Merkle, Milan | en |
dc.date.accessioned | 2020-04-27T10:55:26Z | - |
dc.date.available | 2020-04-27T10:55:26Z | - |
dc.date.issued | 2008-06-01 | en |
dc.identifier.issn | 0022-247X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/978 | - |
dc.description.abstract | More than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a new version of Carathéodory's convex hull theorem, that we also prove in the paper. As an application, we give a discrete representation of second order characteristics for a family of continuous functions of a single random variable. | en |
dc.publisher | Elsevier | - |
dc.relation | Ministry of Science and Environmental Protection of Serbia, project number 144021 | - |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Carathéodory's convex hull theorem | Correlation | Covariance | Quadrature rules | en |
dc.title | A mean value theorem for systems of integrals | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jmaa.2007.12.012 | en |
dc.identifier.scopus | 2-s2.0-40049091323 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 334 | en |
dc.relation.lastpage | 339 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 342 | en |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
SCOPUSTM
Citations
3
checked on Nov 18, 2024
Page view(s)
18
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.