DC FieldValueLanguage
dc.contributor.authorJanković, Slobodankaen
dc.contributor.authorMerkle, Milanen
dc.date.accessioned2020-04-27T10:55:26Z-
dc.date.available2020-04-27T10:55:26Z-
dc.date.issued2008-06-01en
dc.identifier.issn0022-247Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/978-
dc.description.abstractMore than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a new version of Carathéodory's convex hull theorem, that we also prove in the paper. As an application, we give a discrete representation of second order characteristics for a family of continuous functions of a single random variable.en
dc.publisherElsevier-
dc.relationMinistry of Science and Environmental Protection of Serbia, project number 144021-
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.subjectCarathéodory's convex hull theorem | Correlation | Covariance | Quadrature rulesen
dc.titleA mean value theorem for systems of integralsen
dc.typeArticleen
dc.identifier.doi10.1016/j.jmaa.2007.12.012en
dc.identifier.scopus2-s2.0-40049091323en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage334en
dc.relation.lastpage339en
dc.relation.issue1en
dc.relation.volume342en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 18, 2024

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.