DC FieldValueLanguage
dc.contributor.authorObradović, Radovanen
dc.contributor.authorJanev, Markoen
dc.contributor.authorAntić, Borislaven
dc.contributor.authorCrnojević, Vladimiren
dc.contributor.authorPetrović, Nemanjaen
dc.date.accessioned2020-04-27T10:55:17Z-
dc.date.available2020-04-27T10:55:17Z-
dc.date.issued2011-12-01en
dc.identifier.isbn978-1-457-71303-3en
dc.identifier.issn1522-4880en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/904-
dc.description.abstractIn this paper, we propose a novel method for denoising images corrupted by the mixture of the additive white Gaussian noise and the heavy tailed noise. The proposed method is based on robust statistical approach, i.e. application of M-estimators in the combination with l 1 sparse regularization technique. Thus, we perform the denoising by numerical solving of the convex optimization problem. Additionally, the developed method performs denoising adaptively in order to preserve the image details, by adjusting regularization coefficients according to the local variance. The proposed de-noising scheme produces excellent results, both objectively (in terms of PSNR and MSSIM) and subjectively and outperforms state-of-the-art filters for denoising heavy tailed noise in images.en
dc.publisherIEEE-
dc.relation.ispartofProceedings - International Conference on Image Processing, ICIPen
dc.subjectestimation | gradient methods | Image denoising | pursuit algorithmsen
dc.titleRobust sparse image denoisingen
dc.typeConference Paperen
dc.relation.conference18th IEEE International Conference on Image Processing, ICIP 2011; Brussels; Belgium; 11 September 2011 through 14 September 2011-
dc.identifier.doi10.1109/ICIP.2011.6116188en
dc.identifier.scopus2-s2.0-84856285478en
dc.relation.firstpage2569en
dc.relation.lastpage2572en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-3246-4988-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.