DC FieldValueLanguage
dc.contributor.authorPopović, Branislaven
dc.contributor.authorJanev, Markoen
dc.contributor.authorDelić, Vladoen
dc.date.accessioned2020-04-27T10:55:17Z-
dc.date.available2020-04-27T10:55:17Z-
dc.date.issued2012-12-01en
dc.identifier.isbn978-1-467-32984-2en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/899-
dc.description.abstractClustering of Gaussian mixture components, i.e. Hierarchical Gaussian mixture model clustering (HGMMC) is a key component of Gaussian selection (GS) algorithm, used in order to increase the speed of a Continuous Speech Recognition (CSR) system, without any significant degradation of its recognition accuracy. In this paper a novel Split-and-Merge (S&M) HGMMC algorithm is applied to GS, in order to achieve a better trade-off between speed and accuracy in a CSR task. The algorithm is further improved by introducing model selection in order to obtain the best possible trade-off between recognition accuracy and computational load in a GS task applied within an actual recognition system. At the end of the paper we discuss additional improvements towards finding the optimal setting for the Gaussian selection scheme.en
dc.publisherIEEE-
dc.relation.ispartof2012 20th Telecommunications Forum, TELFOR 2012 - Proceedingsen
dc.subjectcontinuous speech recognition | Gaussian selection | hierarchical clustering | split-and-mergeen
dc.titleGaussian selection algorithm in Continuous Speech Recognitionen
dc.typeConference Paperen
dc.relation.conference20th Telecommunications Forum, TELFOR 2012; Belgrade; Serbia; 20 November 2012 through 22 November 2012-
dc.identifier.doi10.1109/TELFOR.2012.6419307en
dc.identifier.scopus2-s2.0-84874178314en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage705en
dc.relation.lastpage712en
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3246-4988-
Show simple item record

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.