DC FieldValueLanguage
dc.contributor.authorAtanacković, Teodoren
dc.contributor.authorJanev, Markoen
dc.contributor.authorPilipović, Stevanen
dc.contributor.authorZorica, Dušanen
dc.date.accessioned2020-04-27T10:55:15Z-
dc.date.available2020-04-27T10:55:15Z-
dc.date.issued2017-01-25en
dc.identifier.issn0022-3239en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/884-
dc.description.abstractTwo variational problems of finding the Euler–Lagrange equations corresponding to Lagrangians containing fractional derivatives of real- and complex-order are considered. The first one is the unconstrained variational problem, while the second one is the fractional optimal control problem. The expansion formula for fractional derivatives of complex-order is derived in order to approximate the fractional derivative appearing in the Lagrangian. As a consequence, a sequence of approximated Euler–Lagrange equations is obtained. It is shown that the sequence of approximated Euler–Lagrange equations converges to the original one in the weak sense as well as that the sequence of the minimal values of approximated action integrals tends to the minimal value of the original one.en
dc.publisherSpringer Link-
dc.relationViscoelasticity of fractional type and shape optimization in a theory of rods-
dc.relationMethods of Functional and Harmonic Analysis and PDE with Singularities-
dc.relationIntegrated system for detection and estimation of fire development by real-time monitoring of critical parameters-
dc.relationDevelopment of Dialogue Systems for Serbian and Other South Slavic Languages-
dc.relationSecretariat for Science of Vojvodina, Grant 114-451-947-
dc.relation.ispartofJournal of Optimization Theory and Applicationsen
dc.subjectComplex-order fractional variational problems | Euler–Lagrange equations | Expansion formula | Weak convergenceen
dc.titleEuler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivativesen
dc.typeArticleen
dc.identifier.doi10.1007/s10957-016-0873-6en
dc.identifier.scopus2-s2.0-84955258033en
dc.relation.firstpage256en
dc.relation.lastpage275en
dc.relation.issue1en
dc.relation.volume174en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.funderMESTD-
crisitem.project.funderNIH-
crisitem.project.funderNIH-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174005e.php-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.fundingProgramNATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES-
crisitem.project.fundingProgramNATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174005-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174024-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES/5R37DK044003-17-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES/5R01GM032035-03-
crisitem.author.orcid0000-0003-3246-4988-
crisitem.author.orcid0000-0002-9117-8589-
Show simple item record

SCOPUSTM   
Citations

14
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.