DC FieldValueLanguage
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorRančić, Svetozaren
dc.contributor.authorMarković, Ivicaen
dc.contributor.authorMulalić, Edinen
dc.contributor.authorIlić, Velimiren
dc.date.accessioned2020-04-27T10:55:14Z-
dc.date.available2020-04-27T10:55:14Z-
dc.date.issued2008-12-01en
dc.identifier.isbn978-142442904-2en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/871-
dc.description.abstractNamed entity (NE) recognition is a core technology for understanding low level semantics of texts. In this paper we report our preliminary results for Named Entity Recognition on MUC 7 corpus by combining the supervised machine learning system in the form of probabilistic generative Hidden Markov Model (HMM) for named entity classes PERSON, ORGANIZATION and LOCATION, and grammar based component for DATE, TIME, MONEY and PERCENT. We have implemented two variations of the basic Hidden Markov Model, where the second one is our version of HMM which uses the context of surrounding words to determine the NE class of the current word, leading to more accurate and faster NE recognition.en
dc.publisherIEEE-
dc.relation.ispartof9th Symposium on Neural Network Applications in Electrical Engineering, NEUREL 2008 Proceedingsen
dc.subjectHidden Markov model | Information extraction | Named entity recognition | Viterbi decodingen
dc.titleNamed entity recognition and classification using context hidden markov modelen
dc.typeConference Paperen
dc.relation.conference9th Symposium on Neural Network Applications in Electrical Engineering, NEUREL 2008; Belgrade; Serbia; 25 September 2008 through 27 September 2008-
dc.identifier.doi10.1109/NEUREL.2008.4685557en
dc.identifier.scopus2-s2.0-58049156739en
dc.relation.firstpage43en
dc.relation.lastpage46en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-4705-5856-
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 23, 2024

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.